Greatest Common factor:
LCM \& GCF System
least Common multiple
$3,5,10$

$$
\begin{aligned}
& 3,6,9,15,18,21,24,27,30 \\
& 5,10,15,20,30,35
\end{aligned}
$$

$$
10,20,30
$$

30 is least common multiple.

$$
\begin{aligned}
& \begin{array}{l}
5 \mid 3,2_{1}^{2}, 0^{2} \\
3,1,2
\end{array} \\
& \text { Lime } 5 \times 3 \times 2=30
\end{aligned}
$$

* LCM of numbers is divided by each of tine no.
Where as GCF or GCM divides each of the no.

$$
G C F
$$

Find GCF of $15,20,25$

$$
\begin{aligned}
& 15=3 \times 5 \quad G C F=5 \\
& 20=4 \times 5 \\
& 25=5 \times 5
\end{aligned}
$$

Product of two no $=$ LCM \times CM.

1. What will be LCM of 16,20 , and 24 ?

$$
\begin{array}{|c|c|}
\hline 4 & 16,20,24 \\
\hline 2 \mid 4,5,6 \\
\hline 2,5,3 \\
\hline
\end{array}
$$

LCm $4 \times 2 \times 2 \times 5 \times 3=240$

Note:-
$\frac{24}{100} \times \frac{116}{10} \times \frac{32}{1000}$
2.

Find lum 24, 16, 32

Find $L \mathrm{~cm}$ of, lenst decimal ${ }_{\text {pla }}$. $=2$
$0.03^{\lambda} 0.024 \quad 0.084$
$\operatorname{Lan} 3,24,84=168$

$$
=1.68
$$

3. Find HCF of 45,48 , and 96 ?

$$
\begin{aligned}
& 45=\left\{\begin{array}{l}
\times 3 \times 5 \\
48= \\
96=3 \times 2 \times 2 \times 2 \\
3
\end{array} \quad \text { HCF }=3\right. \\
& \times 2 \times 2 \times 2 \times 2 \times 2
\end{aligned}
$$

$$
\begin{gathered}
H C F \text { of } 48 \text { and } 45 \\
\text { in } 3 .
\end{gathered}
$$

$$
\text { in } 3 \text {. }
$$

$$
\begin{aligned}
& \text { Now find HCF of } 3 \text { and } 96{ }^{x x} \\
& \text { HCF of } 45,48,96
\end{aligned}
$$

4. Find the HCF of $0.16,20$, and 0.032 ?

$$
\begin{aligned}
& 16,20,32 \\
& H C F=.004 \\
& H C F
\end{aligned}
$$

$$
\text { LCM of fraction }=\frac{L C M \text { of Numerate r }}{\text { HCF denom }}
$$

5. Find LCM of $\frac{4}{9}, \frac{7}{10}$, and $\frac{8}{15}$?

Lan of $4,7,8$ is 56 HCFor $9,10,15$ is 1
\therefore Lcon of $\frac{4}{9}, \frac{7}{10}, \frac{8}{15}$ is 56 .
Fend LCm $\frac{3}{8}, \frac{5}{2}, \frac{15}{6}$
Lem of $\mathrm{Nr}=15$
HCF of $\mathrm{Dr}_{r}=2$
Lan f faction $\frac{3}{8}, \frac{5}{2}, \frac{15}{6}$ is $\frac{15}{2}$
6. Find HCF of $\frac{4}{7}, \frac{8}{9}$, and $\frac{10}{63}$?

Nr-Numenaler Dr - Denumurater,

$$
\begin{aligned}
& \text { HCF of fraction }=\frac{\text { HCF of Nr }}{\text { LCM of } \mathrm{Dr}} \\
& \text { HCF of } 4,8,10 \text { is } 2 \\
& \text { Lan f } 7,9,63 \text { in } 63 \\
& \text { HCF of } \frac{4}{7}, \frac{8}{9}, \frac{10}{63} \text { is } \frac{2}{83}
\end{aligned}
$$

7. What is the least multiple of 13 ,

$$
\begin{aligned}
& N_{0}=\text { Lem of } 13,11,15-5 \\
&=13 \times 11 \times 15-5 \\
&=13 \times 165-5 \\
&= 2140 \text { An }
\end{aligned}
$$

Hw/ A milkman has 3 Jar containing 57
liters, 129 liters and 177 liters of pure milk respectively. A measuring can leaves the same amount of milk
$177.57=120$
$177-129=48$
Unmeasured in each Jar after a
$49-57=72$
different number of exact measurements of milk in each jar. What 24 is the volume of largest such can? libe
$\begin{array}{ll}\text { (a.) } 24 \text { Liters } & \text { (b) } 22 \text { liters }\end{array}$
(c) 20 liters
(d) 16 liters
9. In a party of children each one gives gift to others the total no. gifts distributed in that party was 132. Fund the no. of children attend that party.
$n^{2}-n=132$ let n childrem attend the Parts

$$
\begin{aligned}
& n^{2}-n-12 n+11 n-132 \\
& n(n-12)+11(n-12)=0
\end{aligned} \quad \text { complains } n=12 \quad \text { As }
$$

$$
(n-12)(n+11)=0
$$

$$
n=12
$$

10. Find LCM of $4^{-2}, 4^{-4}, 4^{-6}$.
\downarrow
base are same and fever are negative sheen the leart-Integresf pouter will be Lcm

$$
L c m=4^{-2}
$$

11. Find LCM of $\underset{\substack{\text { Cm }} \overrightarrow{L_{2}}, 5^{4}, 5^{6} \text { greatest }}{ }$ wile belem. whim bare are Sane.
12. Find HCF of $6^{8}, 6^{4}, 6^{3}$.
leart positime fower will
13. Find HCF of $3^{-2}, 3^{-4}, 3_{\underset{\text { HCF }}{-6}}^{\downarrow}$.
14. If LCM of two no. is 2310 and their HCF is 30. If one no. is 330 . Then find the other no.

$$
\begin{aligned}
& \text { LCm } \times H C F=\text { Product } f \text { two no } \\
& 2310 \times B \phi=33 \phi \times x \\
& \frac{2310}{11}=x \\
& 210=x
\end{aligned}
$$

15. If LCM of two no. is 24 times of their HCF. If The sum of HCF and LCM is 375 and one no. is 45 , Then what will be the other no.?

$$
\begin{aligned}
\text { Let } H C F & -x=15 \\
\text { LCM } & =24 x=360 \\
H C F+L C M & =375 \\
x+24 x & =375 \\
25 x & =375 \\
x & =15
\end{aligned}
$$

Product of two ho $=L \mathrm{CM} \times H C F$

$$
\begin{gathered}
45 \times x=8360 \times 15 \\
x=120
\end{gathered}
$$

16. (I). The greatest no. which when divided by (25, 73 , and 97 leaves remainder equal in each Case.

$$
\left.\begin{array}{l|l}
73-25=48 \\
97-73=24 \\
97-25=72
\end{array} \quad \right\rvert\, \begin{aligned}
& \frac{25}{24}=0 \\
& \frac{73}{24}=1
\end{aligned}
$$

Now, Find

$$
\text { HCF of } 48,24,42
$$

$$
=24
$$

$$
\frac{91}{24}=
$$

Ans.
(II) The greatest no. which when divided by 1541, 2443, and 2607 leaves remainder equal in each Case.
\therefore Greatest wo is 82

$$
\begin{aligned}
& 2443-1541=902
\end{aligned}
$$

$$
\begin{aligned}
& 2607-1541=1066 \\
& 2607-2443=164 \\
& \begin{array}{c}
H C F \text { of } 82 \text { end } 1 b^{4} \\
\text { in } 82
\end{array} \\
& \begin{array}{l}
\frac{164)}{902(5} \\
\frac{820}{582) 164(2} \\
\frac{82}{\frac{8 x}{x x}}
\end{array}
\end{aligned}
$$

17. Find the least no. which is to be subtracted out of 1936. so that when it divided by 9,10 and 15 leaves remainder (7) in each case. 93
$90)$

$$
\begin{aligned}
& \begin{array}{l}
1936(21 \\
\frac{180}{136} \\
90
\end{array} \\
& \text { Remainder } \\
& 1936 \\
& \text { (ai) } \text { (end }=46-7 \\
& =39 \\
& \frac{39}{1897}
\end{aligned}
$$

18. Find line least no. which is a perfect square which can be divided by $12,15,18$ and 24 exactly.

Trim:- Find the Lem of no. and mullepley
the foulers which is not paired up.

$$
\begin{aligned}
& \text { Lu 12. 15, 18,24 } \\
& =360 \times 10=3600 \\
& =2^{3} \sqrt[\left(3^{2}\right) \times 5^{1} \times 2 \times 5]{ }
\end{aligned}
$$

19. The least no. of five digits which can be divided by 40, 50, and 60 without remainder.

$$
\begin{aligned}
& \text { remainder. } \\
& L C m=40,50,60 \\
&=600 \\
& \text { rive: }
\end{aligned}
$$

HCFaluans divide the numen

 Lean is divided by numbers: 20. If HCF of three numbers is 30 and numbers are is ratio $2: 3: 5$. Then numbers are(a) $00.30: 150$
(b) 120:200: 300
(c) $60 \cdot 90.100$
(a) $60: 90: 150$

2:3:5.

