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Matrix Algebra

Section 2.1 Matrix Addition, Scalar Multiplication, and Transposition 
In the study of systems of linear equations in Chapter 1, we found it convenient to
manipulate the augmented matrix of the system. Our aim was to reduce it to row-
echelon form (using elementary row operations) and hence to write down all solu-
tions to the system. In the present chapter, we will consider matrices for their own
sake, although some of the motivation comes from linear equations. This subject is
quite old and was first studied systematically in 1858 by Arthur Cayley.1

A rectangular array of numbers is called a matrix (the plural is matrices), and the
numbers are called the entries of the matrix. Matrices are usually denoted by
uppercase letters: A, B, C, and so on. Hence, 

are matrices. Clearly matrices come in various shapes depending on the number of
rows and columns. For example, the matrix A shown has 2 rows and 3 columns. In
general, a matrix with m rows and n columns is referred to as an m ´ n matrix or as
having size m ´ n. Thus matrices A, B, and C above have sizes 2 ´ 3, 2 ´ 2, and
3 ´ 1, respectively. A matrix of size 1 ´ n is called a row matrix, whereas one of
size n ´ 1 is called a column matrix. 

Each entry of a matrix is identified by the row and column in which it lies. The
rows are numbered from the top down, and the columns are numbered from left to
right. Then the (i, j )-entry of a matrix is the number lying simultaneously in row i
and column j. For example, 

The (2, 3)-entry of  is 6
1 2 1
0 5 6

−





The (1, 2)-entry of  is
1 1
0 1

1
−





−

A B C=
−





=
−





=














1 2 1
0 5 6

1 1
0 2

1
3
2

1Arthur Cayley (1821–1895) showed his mathematical talent early and graduated from Cambridge in
1842 as senior wrangler. With no employment in mathematics in view, he took legal training and worked
as a lawyer while continuing to do mathematics, publishing nearly 300 papers in fourteen years. Finally,
in 1863, he accepted the Sadlerian professorship at Cambridge and remained there for the rest of his life,
valued for his administrative and teaching skills as well as for his scholarship. His mathematical
achievements were of the first rank. In addition to originating matrix theory and the theory of
determinants, he did fundamental work in group theory, in higher-dimensional geometry, and in the
theory of invariants. He was one of the most prolific mathematicians of all time and produced 966
papers, filling thirteen volumes of 600 pages each.
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A special notation has been devised for the entries of a matrix. If A is an
m ´ n matrix, and if the (i, j )-entry of A is denoted as aij, then A is displayed
as follows:

This is usually denoted simply as A = [aij]. Thus aij is the entry in row i and 
column j of A. For example, a 3 ´ 4 matrix in this notation is written 

An n ´ n matrix A is called a square matrix. For a square matrix A = [aij], the
entries a11, a22, a33, … , ann are said to lie on the main diagonal of the matrix A.
Hence, the main diagonal extends from the upper left corner of A to the lower 
right corner (shaded in the following 3 ´ 3 matrix):

It is worth pointing out a convention regarding rows and columns: Rows are
mentioned before columns. For example:

If a matrix has size m ´ n, it has m rows and n columns. 
If we speak of the (i, j )-entry of a matrix, it lies in row i and column j. 
If an entry is denoted aij, the first subscript i refers to the row and the second
subscript j to the column in which aij lies. 

Two matrices A and B are called equal (written A = B) if and only if:

1. They have the same size. 
2. Corresponding entries are equal. 

If the entries of A and B are written in the form A = [aij], B = [bi j], described earlier,
then the second condition takes the following form: 

[aij] = [bi j] means aij = bi j for all i and j.

Example 1
Given discuss the possibility that 

A = B, B = C, A = C.
Solution
A = B is impossible because A and B are of different sizes: A is 2 ´ 2 whereas
B is 2 ´ 3. Similarly, B = C is impossible. A = C is possible provided that 

corresponding entries are equal: means a = 1, b = 0, c = -1, 

and d = 2. 

a b
c d







=
−







1 0
1 2

A
a b
c d

B C= 





=
−





=
−







, , ,  and 
1 2 1
3 0 1

1 0
1 2

a a a
a a a
a a a
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Section 2.1 Matrix Addition, Scalar Multiplication, and Transposition 

Matrix Addition 
If  A and B are matrices of the same size, their sum A + B is the matrix formed by
adding corresponding entries. If A = [aij] and B = [bi j], this takes the form 

Note that addition is not defined for matrices of different sizes. 

Example 2

Solution 

Example 3
Find a, b, and c if .
Solution
Add the matrices on the left side to obtain

Because corresponding entries must be equal, this gives three equations: 
a + c = 3, b + a = 2, and c + b = -1. Solving these yields a = 3, b = -1, c = 0. 

If A, B, and C are any matrices of the same size, then 

In fact, if A = [aij] and B = [bi j], then the (i, j )-entries of A + B and B + A are,
respectively, aij + bi j and bi j + aij. Since these are equal for all i and j, we get 

The associative law is verified similarly. 
The m ´ n matrix in which every entry is zero is called the zero matrix and is

denoted as 0 (or 0mn if it is important to emphasize the size). Hence,

holds for all m ´ n matrices X. The negative of an m ´ n matrix A (written -A) is
defined to be the m ´ n matrix obtained by multiplying each entry of A by  -1.
If A = [aij], this becomes -A = [-aij]. Hence, 

holds for all matrices A where, of course, 0 is the zero matrix of the same size as A. 
A closely related notion is that of subtracting matrices. If A and B are two m ´ n

matrices, their difference A - B is defined by 

A B A B− = + −( )

A A+ − =( ) 0

0 + =X X

A B a b b a B Aij ij ij ij+ = + = + = +[ ] [ ]

A B B A
A B C A B C

+ = +
+ + = + +

(commutative law)
(associative law)   ( ) ( )   

[ ] [ ]a c b a c b+ + + = −3 2 1

[ ] [ ] [ ]a b c c a b+ = −3 2 1

A B+ =
+ + −

− + + +






= 





2 1 1 1 3 1
1 2 2 0 0 6

3 2 2
1 2 6

.

If  and  compute A B A B=
−







=
−





+
2 1 3
1 2 0

1 1 1
2 0 6

, .

A B a bij ij+ = +[ ]
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Note that if A = [aij] and B = [bi j], then

is the m ´ n matrix formed by subtracting corresponding entries.   

Example 4

Solution

Example 5

Solution 1
X must be a 2 ´ 2 matrix. If the equation reads

The rule of matrix equality gives .

Thus,

Solution 2 
We solve a numerical equation a + x = b by subtracting the number a from 
both sides to obtain x = b - a. This also works for matrices. To solve 

simply subtract the matrix from both sides 

to get 

Of course, this is the same solution as obtained in Solution 1. 

The two solutions in Example 5 are really different ways of doing the same thing.
However, the first obtains four numerical equations, one for each entry, and solves
them to get the four entries of X. The second solution solves the single matrix
equation directly via matrix subtraction, and manipulation of entries comes in
only at the end. The matrices themselves are manipulated. This ability to work with
matrices as entities lies at the heart of matrix algebra. 

X =
−
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−







=
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1 0
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X ,

X =
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2 2
0 1

.

1 3 0 2 1 1 2 1= + = + − = − + = +x y z w, , ,   and 

1 0
1 2

3 2
1 1

3 2
1 1−







=
−







+ 





=
+ +
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,

Solve  where  is a matrix.
3 2
1 1

1 0
1 2−







+ =
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X X,

− =
−
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− =
− − − − −

− − − − −






=
−

A

A B

3 1 0
1 2 4
3 1 1 1 0 1

1 2 2 0 4 6
2 0( )

( )
11

3 2 10
3 1 1 1 1 0 0 1 2
1 2 3 2 0 1 4 6 1
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+ − =
+ − − − − + +
− − + − − + −







=A B C
33 2 3
4 1 1

−
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A B C=
−

−






=
−
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=
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3 1 0
1 2 4

1 1 1
2 0 6

1 0 2
3 1 1

, , .  and  Coompute 

 and 

−

− + −

A

A B A B C

,

, .

A B a b a bij ij ij ij− = + − = −[ ] [ ] [ ]
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It is important to note that the size of X in Example 5 was inferred from the
context: X had to be a 2 ´ 2 matrix because otherwise the equation would not make
sense. This type of situation occurs frequently; the sizes of matrices involved in
some calculations are often determined by the context. For example, if 

then A and C must be the same size (so that A + C makes sense), and that size must
be 2 ´ 3 (so that the sum is 2 ´ÿ3). For simplicity we shall often omit reference to
such facts when they are clear from the context.

Scalar Multiplication
In Gaussian elimination, multiplying a row of a matrix by a number k means
multiplying every entry of that row by k. More generally, if A is any matrix and k is
any number, the scalar multiple kA is the matrix obtained from A by multiplying
each entry of A by k. If A = [aij], this is 

The term scalar arises here because the set of numbers from which the entries are
drawn is usually referred to as the set of scalars. We have been using real numbers as
scalars, but we could equally well have been using complex numbers.

Example 6

Solution 

If A is any matrix, note that kA is the same size as A for all scalars k. We also have 

because the zero matrix has every entry zero. In other words, kA = 0 if either k = 0
or A = 0. The converse of these properties is also true, as Example 7 shows. 

Example 7
If kA = 0, show that either k = 0 or A = 0. 
Solution 
Write A = [aij] so that kA = 0 means kaij = 0 for all i and j. If k =ÿ0, there is
nothing to do. If k ¹ 0, then kaij = 0 implies that aij = 0 for all i and j; that is, 
A = 0.

For future reference, the basic properties of matrix addition and scalar
multiplication are listed in Theorem 1. 

0 0 0 0A k= =and

5
15 5 20
10 0 30

1
0 1

3 2
9 3 12
6 0 18
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=
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=
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=
−
−







2 4 2
0 6 4

7 7 14
6 6 14

If  and  compute andA B A B=
−





=
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3 1 4
2 0 6

1 2 1
0 3 2

5 1
2, , ,   3 2A B− .

kA kai j= [ ]

A C+ =
−





1 3 1
2 0 1
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Theorem 1 
Let A, B, and C denote arbitrary m ´ n matrices where m and n are fixed. 
Let k and p denote arbitrary real numbers. Then 

1. A + B = B + A.
2. A + (B + C ) = (A + B ) + C.
3. There is an m ´ n matrix 0, such that 0 + A = A for each A.
4. For each A there is an m ´ n matrix -A, such that A + (-A) = 0.
5. k (A + B ) = kA + kB.
6. (k + p)A = kA + pA.
7. (kp)A = k ( pA ).
8. 1A = A.

Proof 
Properties 1–4 were given previously. To check property 5, let A = [aij] and 
B = [bij ] denote matrices of the same size. Then A + B = [aij + bi j], as before,
so the (i, j )-entry of k(A + B ) is 

But this is just the (i, j )-entry of kA + kB, and it follows that 
k (A + B ) = kA + kB. The other properties can be similarly verified; the
details are left to the reader. 

These properties enable us to do calculations with matrices in much the same
way that numerical calculations are carried out. To begin, property 2 implies that 
the sum (A + B) + C = A +ÿ(B + C ) is the same no matter how it is formed and so is
written as A + B + C. Similarly, the sum A + B + C + D is independent of how it is
formed; for example, it equals both (A + B) + (C + D) and A + [B + (C + D)].
Furthermore, property 1 ensures that, for example, B + D + A + C = A + B + C + D.
In other words, the order in which the matrices are added does not matter. A similar
remark applies to sums of five (or more) matrices. 

Properties 5 and 6 in Theorem 1 extend to sums of more than two terms. 
For example, 

Similar observations hold for more than three summands. These facts, together with
properties 7 and 8, enable us to simplify expressions by collecting like terms,
expanding, and taking common factors in exactly the same way that algebraic
expressions involving variables are manipulated. The following examples illustrate
these techniques. 

Example 8
Simplify 2(A + 3C ) - 3(2C - B) - 3[2(2A + B - 4C ) - 4(A - 2C )] where 
A, B, and C are all matrices of the same size. 
Solution 
The reduction proceeds as though A, B, and C were variables. 

2 3 3 2 3 2 2 4 4 2
2 6 6 3 3 4 2

( ) ( ) [ ( ) ( )]
[

A C C B A B C A C
A C C B A B

+ − − − + − − −
= + − + − + − 88 4 8

2 3 3 2
2 3

C A C
A B B
A B

− +
= + −
= −

]
[ ]

k A B C kA kB kC
k p m A kA pA mA
( )

( )
+ + = + +

+ + = = +

k a b ka kbij ij ij ij( )+ = +
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Example 9
Find 1 ´ 3 matrices X and Y such that 

Solution
If we write A = [1 3 -2] and B = [2 0 1], the equations become X + 2Y = A
and X + Y = B. The manipulations used to solve these equations when X, Y, A,
and B represent numbers all apply in the present context. Hence, subtracting
the second equation from the first gives Y = A - B = [-1 3 -3]. Similarly, sub-
tracting the first equation from twice the second gives X = 2B - A = [3 -3 4].

Transpose 
Many results about a matrix A involve the rows of A, and the corresponding result
for columns is derived in an analogous way, essentially by replacing the word row by
the word column throughout. The following definition is made with such applica-
tions in mind.  If A is an m ´ n matrix, the transpose of A, written AT, is the 
n ´ m matrix whose rows are just the columns of A in the same order. In other
words, the first row of AT is the first column of A, the second row of AT is the
second column of A, and so on.

Example 10
Write down the transpose of each of the following matrices.

Solution

If A = [aij] is a matrix, write AT
= [bi j]. Then bij is the jth element of the ith row

of AT and so is the jth element of the ith column of A. This means bi j = aji so the
definition of AT can be stated as follows: 

This is useful in verifying the following properties of transposition. 

Theorem 2
Let A and B denote matrices of the same size, and let k denote a scalar. 

1. If A is an m ´ n matrix, then AT is an n ´ m matrix. 
2. (AT )T

= A.
3. (kA)T

= kAT.
4. (A + B )T

= AT
+ BT.

If  then A a A aij
T

ji= =[ ], [ ]

A B C D DT T T T= =














= 





=[ ], , , .1 3 2
5
2
6

1 3 5
2 4 6

   and 

A B C D=














= =














=
−

−















1
3
2

5 2 6
1 2
3 4
5 6

3 1 1
1 3 2
1 2 1

[ ]

X Y
X Y

+ = −
+ =

2 1 3 2
2 0 1

[ ]
[ ]
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Proof  
We prove only property 3. If A = [aij], then kA = [kaij], so 

which proves property 3. 

The matrix D in Example 10 has the property that D = DT. Such matrices are
important; a matrix A is called symmetric if A = AT. A symmetric matrix A is neces-
sarily square (if A is m ´ n, then AT is n ´ m, so A = AT forces n = m). The name
comes from the fact that these matrices exhibit a symmetry about the main diagonal.
That is, entries that are directly across the main diagonal from each other are equal. 

For example, is symmetric when b = b¢, c = c ¢, and e = e¢.

Example 11
If A and B are symmetric n ´ n matrices, show that A + B is symmetric. 
Solution 
We have AT

= A and BT
= B, so, by Theorem 2, (A + B )T

= AT
+ BT

= A + B.
Hence A + B is symmetric.

Example 12
Suppose a square matrix A satisfies A = 2AT. Show that necessarily A = 0. 
Solution 
If we iterate the given equation, Theorem 2 gives 

Subtracting A from both sides gives 3A = 0, so 

Exercises 2.1 

A A= = =1
3

1
33 0 0( ) ( ) .

A A A A AT T T T T= = = =2 2 2 2 2 4[ ] [ ( ) ]

a b c
b d e
c e f
′
′ ′

















( ) [ ] [ ]kA ka k a kAT
ji ji

T= = =

1. Find a, b, c, and d if

2. Compute the following:
3.

(a) 3A - 2B ¨(b) 5C (c) 3ET

¨(d) B + D (e) 4AT
- 3C ¨(f ) (A + C)T

(g) 2B - 3E ¨(h) A - D (i) (B -ÿ2E )T

D E= −
















= 





1 3
1 0
1 4

, . and 
1 0 1
0 1 0

 Compute the 

followwing (where possible).

Let   A B C=
−







=
−





=
−





2 1
0 1

3 1 2
0 1 4

3 1
2 0

, , ,

(e) (f )

(g)

1 5 4 0
2 1 0 6

0 1 2
1 0 4
2 4 0

−





−
−

−

















T T

      
 
 
 

♦

33 1
2 1

2
1 2
1 1

3
2 1
1 0

2
1 1
2 3

−





−
−



 −







−
−





T T
♦(h)

   (a)

(b)

3 2 1
5 1 0

5
3 0 2
1 1 2

3
3
1

5
6
2







−
−

−






−
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♦
++

−






−





−
−
−







+
−

− −






7
1
1

2 1
3 2

4
1 2
0 1

3
2 3
1 2

(c)

(d♦ )) [ ] [ ] [ ]3 1 2 2 9 3 4 3 11 6− − + −

(a)

(b)

a b
c d

c d d
a d a b

a b b c
c d d a







=
− −
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− −
− −
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3
2

2
1♦ 11
3 1
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1
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4. Find A if: 

5. Find A in terms of B if:

6. If X, Y, A, and B are matrices of the same size,
solve the following equations to obtain X and Y
in terms of A and B. 

7. Find all matrices X and Y such that:

8. Simplify the following expressions where A, B,
and C are matrices. 

9. If A is any 2 ´ 2 matrix, show that:

10. Let A = [1 1 -1], B = [0 1 2], and C = [3 0 1].
If rA + sB + tC = 0 for some scalars r, s, and t,
show that necessarily r = s = t = 0. 

11. (a) If Q + A = A holds for every m ´ n matrix A,
show that Q = 0mn.

¨(b) If A is an m ´ n matrix and A + A¢ = 0mn,
show that A¢ = -A. 

12. If A denotes an m ´ n matrix, show that A = -A
if and only if A = 0. 

13. A square matrix is called a diagonal matrix if all
the entries off the main diagonal are zero. If A
and B are diagonal matrices, show that the
following matrices are also diagonal.
(a) A + B ¨(b) A - B (c) kA for any number k

14. In each case determine all s and t such that the
given matrix is symmetric: 

15. In each case find the matrix A. 

16. Let A and B be symmetric (of the same size).
Show that each of the following is symmetric. 

17. Show that A + AT is symmetric for any square
matrix A. 

18. A square matrix W is called skew-symmetric
if W T

= -W. Let A be any square matrix. 

(a) Show that A - AT is skew-symmetric. 
(b) Find a symmetric matrix S and a skew-

symmetric matrix W such that A = S + W. 
¨(c) Show that S and W in part (b) are uniquely

determined by A. 

19. If W is skew-symmetric (Exercise 18), show that
the entries on the main diagonal are zero. 

20. Prove the following parts of Theorem 1. 
(a) (k + p)A = kA + pA ¨(b) (kp)A = k ( pA)

21. Let A, A1, A2, … , An denote matrices of the same
size. Use induction on n to verify the following
extensions of properties 5 and 6 of Theorem 1.
(a) k(A1 + A2 +

…+ An ) = kA1 + kA2 +
…+ kAn

for any number k
(b) (k1 + k2 +

…+ kn)A = k1A + k2A +…+ knA
for any numbers k1, k2, … , kn

22. Let A be a square matrix. If A = pBT and B = qAT

for some matrix B and numbers p and q, show that
either A = 0 or pq=1. [Hint: Examples 7 and 12.]

(a) (b)  for any scalar ( )A B kA k− ♦
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Section 2.2 Matrix Multiplication 
Matrix multiplication is a little more complicated than matrix addition or scalar
multiplication, but it is well worth the extra effort. It provides a new way to look at
systems of linear equations as we shall see, and has a wide variety of other applica-
tions as well (for example, Sections 2.6 and 2.7). 

If A is an m ´ n matrix and B is an n ´ k matrix, the product AB of A and B is the
m ´ k matrix whose (i, j )-entry is computed as follows:

Multiply each entry of row i of A by the corresponding 
entry of column j of B, and add the results. 

This is called the dot product of row i of A and column j of B. 

Example 1
Compute the (1, 3)- and (2, 4)-entries of AB where 

Then compute AB. 
Solution 
The (1, 3)-entry of AB is the dot product of row 1 of A and column 3 of B
(high-lighted in the following display), computed by multiplying correspon-
ding entries and adding the results. 

Similarly, the (2, 4) entry of AB involves row 2 of A and column 4 of B. 

Since A is 2 ´ 3 and B is 3 ´ 4, the product is 2 ´ 4. 

Computing the (i, j )-entry of AB involves going across row i of A and down col-
umn j of B, multiplying corresponding entries, and adding the results. This requires
that the rows of A and the columns of B be the same length. The following rule is a
useful way to remember when the product of A and B can be formed and what the
size of the product matrix is.

Rule
Suppose A and B have sizes m ´ n and n¢ ´ p respectively: 

The product AB can be formed only when n = n¢; in this case, the product matrix
AB is of size m ´ p. When this happens, we say that the product AB is defined.

A B
m n n p× ′ ×

3 1 2
0 1 4

2 1 6 0
0 2 3 4
1 0 5 8

4 1 25 12
4 2 23 36

−



 −















=
−







3 1 2
0 1 4

2 1 6 0
0 2 3 4
1 0 5 8

2 4 0 0 1 4 4 8
−



 −















= ⋅ + ⋅ + ⋅ =( , )-entry 336

3 1 2
0 1 4

2 1 6 0
0 2 3 4
1 0 5 8

3 6 1 3
−



 −















= ⋅ + − ⋅ +(1, 3)-entry ( ) 22 5 25⋅ =

A B=
−





=
−















3 1 2
0 1 4

2 1 6 0
0 2 3 4
1 0 5 8

and
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Example 2

Solution
Here, A is a 1 ´ 3 matrix and B is a 3 ´ 1 matrix, so A 2 and B 2 are not defined.
However, the rule reads 

so both AB and BA can be formed and these are 1 ´ 1 and 3 ´ 3 matrices,
respectively. 

Unlike numerical multiplication, matrix products AB and BA need not be equal. 
In fact they need not even be the same size, as Example 2 shows. It turns out to 
be rare that AB = BA (although it is by no means impossible). A and B are said to 
commute when this happens. 

Example 3

Solution 

Hence AB ¹ BA, even though AB and BA are the same size. 

The number 1 plays a neutral role in numerical multiplication in the sense that 
1 . a = a and a . 1 = a for all numbers a. An analogous role for matrix multiplication
is played by square matrices of the following types: 

In general, an identity matrix I is a square matrix with 1’s on the main diagonal and
zeros elsewhere. If it is important to stress the size of an n ´ n identity matrix, we shall

1 0
0 1

1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







































, , , aand so on.

AB

BA

=
− −





 −







=
−

−






=
−





 −

6 9
4 6

1 2
1 0

3 12
2 8

1 2
1 0

6 9
4 −−







=
− −
− −





6

2 3
6 9

A A2 6 9
4 6

6 9
4 6

0 0
0 0

=
− −





 − −







= 





=,  so 0 can occur 2 eeven if 0. Next,A ≠

Let   and  Compute , , andA B A AB=
− −







=
−







6 9
4 6

1 2
1 0

2.    BA.

AB

BA

=














= ⋅ + ⋅ + ⋅ =

=














=

[ ] [ ] [ ]

[ ]

1 3 2
5
6
4

1 5 3 6 2 4 31

5
6
4

1 3 2
55 1
6 1
4 1

5 3
6 3
4 3

5 2
6 2
4 2

5 15 10
6 18 12
4 12 8

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅















=














A B B A
1 3 3 1 3 1 1 3× × × ×

and  

If ] and  compute    and  wA B A AB BA B= =














[ , , , ,1 3 2
5
6
4

2 2 hhen they are defined.
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denote it by In; however, these matrices are usually written simply as I. Identity
matrices play a neutral role with respect to matrix multiplication in the sense that 

whenever the products are defined. 
Before proceeding, we must state the definition of matrix multiplication more

formally. If A = [aij] is m ´ n and B = [bi j] is n ´ p, the ith row of A and the jth
column of B are, respectively, 

Hence the (i, j )-entry of the product matrix AB is the dot product 

where summation notation has been introduced for convenience.2 This is useful in
verifying facts about matrix multiplication. 

Theorem 1 
Assume that k is an arbitrary scalar and that A, B, and C are matrices of sizes such 
that the indicated operations can be performed.

Proof 
We prove properties 3 and 6, leaving the rest as exercises. 
Property 3. Write A = [aij], B = [bij], and C = [ci j] and assume that A is m ´ n and
that B and C are n ´ p. Then B + C = [bij + ci j], so the (i, j)-entry of A(B + C) is

This is the (i, j )-entry of AB + AC because the sums on the right are the 
(i, j )-entries of AB and AC, respectively. Hence A(B + C ) = AB + AC ; the
other equation is proved similarly. 
Property 6. Write AT

= [a¢i j ] and BT
= [b¢i j ], where a¢i j = aji and b¢i j = bji . If B

T and
AT are p ´ n and n ´ m, respectively, the (i, j )-entry of BTAT is 

This is the ( j, i )-entry of AB—that is, the (i, j )-entry of (AB )T. Hence
BTAT

= (AB )T. 

′ = =
= = =

∑ ∑ ∑b a b a a bik
k

n

k j ki j k
k

n

j k ki
k

n

1 1 1

′

a b c a b a c a b a cik k j k j ik k j ik k j
k

n

ik k j
k

n

k

n

ik k j
k

( ) ( )+ = + = +
= ==

∑ ∑∑
1 11 ==

∑
1

n

1
2
3
4

. , .
. ( ) ( ) .
. ( ) ; ( ) .
.

IA A BI B
A BC AB C
A B C AB AC A B C AB AC

= =
=

+ = + − = −

 

 
(( ) ; ( ) .

. ( ) ( ) ( ).

. ( )

B C A BA CA B C A BA CA
k AB kA B A kB

AB BT T

+ = + − = −
= =

=

 
5

6 AAT .

a b a b a b a bi j i j in nj ik k j
k

n

1 1 2 2
1

+ + + =
=

∑�

[ ]a a a

b
b

b

i i in

j

j

nj

1 2

1

2�
�

and 



















AI A IB B= =and
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2Summation notation is a convenient shorthand way to write sums. For example, 

a a x a x a x a x jk i i5 5 6 6 7 7
2 2 2 2 22 3 4 5= + + = + + + + =, ,  and 12

jjik ===
∑∑∑

1

5

5

7

1

4

.

a a a a1 2 3 4+ + +
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Property 2 in Theorem 1 asserts that the associative law A(BC ) = (AB )C holds
for all matrices (if the products are defined). Hence, the product is the same no
matter how it is formed and so is simply written ABC. This extends: The product
ABCD of four matrices can be formed several ways—for example, (AB)(CD),
[A(BC )]D, and A[B(CD)]—but property 2 implies that they are all equal and so are
written simply as ABCD. A similar remark applies in general: Matrix products can be
written unambiguously with no parentheses. 

However, a note of caution about matrix multiplication is in order. The fact that
AB and BA need not be equal means that the order of the factors is important in a
product of matrices. For example, ABCD and ADCB may not be equal.

Warning 
If the order of the factors in a product of matrices is changed, the product matrix
may change (or may not exist). 

Ignoring this warning is a source of many errors by students of linear algebra!
Properties 3 and 4 in Theorem 1 are called the distributive laws, and they

extend to more than two terms. For example, 

Note again that the warning is in effect: For example, A(B - C ) need not equal 
AB - CA. Together with property 5 of Theorem 1, the distributive laws make
possible a lot of simplification of matrix expressions. 

Example 4
Simplify the expression A(BC - CD) + A(C - B)D - AB(C - D).
Solution 

Examples 5 and 6 show how we can use the properties in Theorem 1 to deduce
facts about matrix multiplication. 

Example 5
Suppose that A, B, and C are n ´ n matrices and that both A and B commute
with C; that is, AC = CA and BC = CB. Show that AB commutes with C. 
Solution
Showing that AB commutes with C means verifying that (AB )C = C(AB ).
The computation uses property 2 of Theorem 1 several times, as well as the
given facts that AC = CA and BC = CB.  

Example 6
Show that AB = BA if and only if (A - B)(A + B) = A2

- B2.

( ) ( ) ( ) ( ) ( ) ( )AB C A BC A CB AC B CA B C AB= = = = =

A BC CD A C B D AB C D
ABC ACD AC AB D ABC ABD
ABC ACD

( ) ( ) ( )
( )

− + − − −
= − + − − +
= − + AACD ABD ABC ABD− − +
= 0

A B C D E AB AC AD AE
A C D B AB CB DB

( )
( )
− + − = − + −

+ − = + −
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Solution
Theorem 1 shows that the following always holds:

(*)

Hence if AB = BA, then (A - B )(A + B ) = A2
- B 2 follows. Conversely, if this

last equation holds, then equation (*) becomes 

This gives 0 = AB - BA, and AB = BA follows. 

Matrices and Linear Equations 
One of the most important motivations for matrix multiplication results from its
close connection with systems of linear equations. 

Example 7
Write the following system of linear equations as a single matrix equation. 

Solution 
The two linear equations can be written as a single matrix equation as follows: 

The matrix on the left can be factored as a product of matrices: 

If these matrices are denoted by A, X, and B, respectively, the system of
equations becomes the matrix equation AX = B. 

In the same way, consider any system of linear equations:

AX = B
This is called the matrix form of the system of equations, and B is called the
constant matrix. As in Section 1.1, A is called the coefficient matrix of the system,
and a column matrix X1 is called a solution to the system if AX1 = B. 

If A

a a a
a a a

a a a

X

x
x

n

n

m m mn

=



















=

11 12 1

21 22 2

1 2

1

2

�
�

� � �
�

�
,

xx

B

b
b

bn m



















=



















, , and  these equation

1

2

�
ss become the 

single matrix equation

a x a x a x b
a x a x a x b

a x a x

n n

n n

m m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2

+ + + =
+ + + =

+

�

�

� � � �
22 + + =� a x bmn n m

3 2 1
2 1 1

1

2

3

1

2

−
−





















= 





x
x
x

b
b

3 2
2

1 2 3

1 2 3

1

2

x x x
x x x

b
b

− +
+ −







= 





3 2
2

1 2 3 1

1 2 3 2

x x x b
x x x b

− + =
+ − =

A B A AB BA B2 2 2 2− = + − −

( )( ) ( ) ( )A B A B A A B B A B A AB BA B− + = + − + = + − −2 2
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The matrix form is useful for formulating results about solutions of systems of
linear equations. Given a system AX = B there is a related system 

AX = 0

called the associated homogeneous system. If X1 is a solution to AX = B and if X0

is a solution to AX = 0, then X1 + X0 is a solution to AX = B. Indeed, AX1 = B and
AX0 = 0, so 

This observation has a useful converse. 

Theorem 2 
Suppose X1 is a particular solution to the system AX = B of linear equations. 
Then every solution X2 to AX = B has the form 

for some solution X0 of the associated homogeneous system AX = 0.

Proof
Suppose that X2 is any solution to AX = B so that AX2 = B. Write X0 = X2 - X1.
Then X2 = X0 + X1, and we compute: 

Thus X0 is a solution to the associated homogeneous system AX = 0.

The importance of Theorem 2 lies in the fact that sometimes a particular solution
X1 is easily found, and so the problem of finding all solutions is reduced to solving
the associated homogeneous system. 

Example 8
Express every solution to the following system as the sum of a specific solution
plus a solution to the associated homogeneous system. 

Solution
Gaussian elimination gives x = 4 + 2t, y = 2 + t, z = t, where t is arbitrary.
Hence the general solution is 

Thus is a specific solution, and gives all solutions to the 

associated homogeneous system (do the Gaussian elimination with all the 
constants zero). 

X t1

2
1
1

=














X0

4
2
0

=














X
x
y
z

t
t

t
t=















=
+
+















=














+














4 2
2

4
2
0

2
1
1

x y z
x y z
x z

− − =
− − =

− =

2
2 3 6

2 4

AX A X X AX AX B B0 2 1 2 1 0= − = − = − =( )

X X X2 0 1= +

A X X AX AX B B( )1 0 1 0 0+ = + = + =
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Theorem 2 focuses attention on homogeneous systems. In that case there is 
a convenient matrix form for the solutions that will be needed later. Example 9 pro-
vides an illustration.

Example 9
Solve the homogeneous system AX = 0 where

Solution
The reduction of the augmented matrix to reduced form is 

so the solutions are and x4 = t by Gaussian elimina-
tion. Hence we can write the general solution X in the matrix form 

where are particular solutions deter-
mined by the Gaussian algorithm.

The solutions X1 and X2 in Example 9 are called the basic solutions to the
homogeneous system, and a solution of the form sX1 + tX2 is called a linear
combination of the basic solutions X1 and X2. 

In the same way, the Gaussian algorithm produces basic solutions to every
homogeneous system AX = 0 (there are no basic solutions if there is only the 
trivial solution). Moreover, every solution is given by the algorithm as a linear
combination of these basic solutions (as in Example 9). This proves most of

Theorem 3 
Consider the homogeneous system AX = 0 in n variables where A has rank r. Then:

1. The system has exactly n - r basic solutions.
2. Every solution is a linear combination of the basic solutions. 

Proof
All that remains is to observe that there are exactly n - r basic parameters by
Theorem 2 §1.2, and hence n - r basic solutions. 

Example 10
Find the basic solutions of the system AX = 0 and express every solution as 
a linear combination of the basic solutions, where 

A =

−
− −

− −
− −



















1 3 0 2 2
2 6 1 2 5
3 9 1 0 7
3 9 2 6 8

X XT T
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52 1 0 0 0 1= =[ ] [ ]and 
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= +t sX tX

1
5

3
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1

x s t x s x t1
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5 2 3

3
52= + = =, ,

1 2 3 2
3 6 1 0
2 4 4 2

1 2 0
0 0 1
0 0 0 0

1
5
3
5

− −
−
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→
− −
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A =
− −

−
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1 2 3 2
3 6 1 0
2 4 4 2
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Solution
The reduction of the augmented matrix to reduced row-echelon form is 

so the general solution is x1 = 3r - 2s - 2t, x2 = r, x3 = -6s + t, x4 = s, and x5 = t
where r, s and t are parameters. In matrix form this is 

Hence the basic solutions are 

Block Multiplication 
When forming matrix products YA and AX, it is often convenient to view the matrix
A as a column of rows or as a row of columns. If A is m ´ n, and if R1, R2, … , Rm are
the rows of A and C1, C2, … , Cn are the columns, we write 

Then the definition of matrix multiplication shows that 

This gives AX in terms of its rows and YA in terms of its columns. In other words,
the rows of AX are R1X, R2X, … , RmX and the columns of YA are YC1, YC2, … , YCn.

Writing a matrix A as a row of columns, or as a column of rows, are special block
decompositions of A, and these decompositions are related to matrix multiplication
as the above results show. As another illustration, write the 2 ´ 3 matrix A

as A =ÿ[C1 C2 C3] where C1, C2 and C3 denote the columns of A, and let 

be a column. If we (rather naively) view A as a row matrix, the product 
AX becomes 

AX C C C
x
x
x

x C x C x C=














= + +[ ]1 2 3

1

2

3

1 1 2 2 3 3

X
x
x
x
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The amazing thing is that this is true! Indeed, if we write so that 

This holds in general, and the result will be used several times in this book. 

Theorem 4
Let A = [C1 C2

… Cn] be an m ´ n matrix with columns C1, C2, … , Cn. If 
X = [x1 x2

… xn ]T is any column, then 

These are special cases of a more general way of looking at matrices that, among
its other uses, can greatly simplify matrix multiplications. The idea is to partition
a matrix A into smaller matrices (called blocks) by inserting vertical lines between
the columns and horizontal lines between the rows.3

As an example, consider the matrices 

where the blocks have been labeled as indicated. This is a natural way to think of A
in view of the blocks I2 and 023 that occur. This notation is particularly useful when
we are multiplying the matrices A and B because the product AB can be computed
in block form as follows:

This is easily checked to be the product AB, computed in the conventional manner. 
In other words, we can compute the product AB by ordinary matrix multiplication,

using blocks as entries. The only requirement is that the blocks be compatible. 

AB
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1 2 3
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3 We have been doing this already with the augmented matrices arising from systems of linear
equations. 
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That is, the sizes of the blocks must be such that all (matrix) products of blocks that occur
make sense. This means that the number of columns in each block of A must equal
the number of rows in the corresponding block of B. 

Block Multiplication 
If matrices A and B are partitioned compatibly into blocks, the product AB can be
computed by matrix multiplication using blocks as entries. 

We omit the proof and instead give one more example of block multiplication that
will be used below. 

Theorem 5 

Suppose that matrices are partitioned as shown 

where B and B1 are square matrices of the same size, and C and C1 are square of
the same size. These are compatible partitionings and block multiplication gives 

Block multiplication is useful in computing products of matrices in a computer
with limited memory capacity. The matrices are partitioned into blocks in such 
a way that each product of blocks can be handled. Then the blocks are stored in
auxiliary memory (on tape, for example), and the products are computed one by one.

Exercises 2.2 
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 and 

1. Compute the following matrix products.

2. In each of the following cases, find all possible
products A2, AB, AC, and so on. 

3. Find a, b, a1, and b1 if: 

4. Verify that A2
- A - 6I = 0 if: 

5. Given  A B C=
−







 =

−







 =

















1 1
0 1

1 0 2
3 1 0

1 0
2 1
5 8

, , ,

(a) (b)A A=
−
−









 =

−










3 1
0 2

2 2
2 1

♦

   
(a)

(b)

a b
a b

a
1 1

3 5
1 2

1 1
2 0

2 1
1 2







−
−







=
−





−






♦ bb
a b1 1

7 2
1 4







=
−







  (a)

(b

A B C=
−









 =

−







 =

−















1 2 3
1 0 0

1 2
3

1 0
2 5
0 3

1
2

, ,

♦ )) A B C=
−









 =

−







 = −

















1 2 4
0 1 1

1 6
1 0

2 0
1 1
1 2

, ,

(a) (b)1 3
0 2

2 1
0 1

1 1 2
2 0 4

2 3 1
1 9 7
1 0 2

−










−









−









−









♦







−









−

















− −








(c) (d)5 0 7
1 5 9

3
1
1

1 3 3

3 0
2 1
0 6

♦

[ ]























−
−

















−
−

(e) (f )1 0 0
0 1 0
0 0 1

3 2
5 7
9 7

1 1 3
2
1

♦

[ ]
88

2
1
7

1 1 3

3 1
5 2

2 1
5 3

















−

















−










−
−






(g) (h)
[ ]

♦ 










































(i) ( j)2 3 1
5 7 4

0 0
0 0
0 0

0 0
0 0
0 0

a
b

c

a
b

c

♦




















a
b

c

′
′

′

0 0
0 0
0 0

Chapter-2.qxd  12/4/01  11:33 AM  Page 47



48
Chapter 2 Matrix Algebra

(a) A(B - D) = AB - AD ¨(b) A(BC ) = (AB)C

(c) (CD)T
= DTCT

6. Let A be a 2 ´ 2 matrix. 

(a) If A commutes with , show that 

for some a and b.

¨(b) If A commutes with , show that 

for some a and c.

(c) Show that A commutes with every 2 ´ 2

matrix if and only if for some a.

7. Write each of the following systems of linear
equations in matrix form. 

8. In each case, express every solution of the
system as a sum of a specific solution plus 
a solution of the associated homogeneous
system. 

9. If X0 and X1 are solutions to the homogeneous
system of equations AX = 0, show that 

sX0 + tX1 is also a solution for any scalars s
and t (called a linear combination of X0

and X1).

10. In each of the following, find the basic
solutions, and write the general solution as 
a linear combination of the basic solutions. 

11. Assume that and that 

AX = B has a solution Find a two-

parameter family of solutions to AX = B. 

12. (a) If A2 can be formed, what can be said about
the size of A?

¨(b) If AB and BA can both be formed, describe
the sizes of A and B. 

(c) If ABC can be formed, A is 3 ´ 3, and C is 
5 ´ 5, what size is B?

13. (a) Find two 2 ´ 2 matrices A such that 
A2

= 0. 

¨(b) Find three 2 ´ 2 matrices A such that 
(i) A2

= I; (ii) A2
= A.

(c) Find 2 ´ 2 matrices A and B such that 
AB = 0 but BA ¹ 0. 

14. Write and let A be 3 ´ n and 

B be m ´ 3. 

(a) Describe PA in terms of the rows of A. 

¨(b) Describe BP in terms of the columns 
of B. 

15. Let A, B, and C be as in Exercise 5. Find the 
(3, 1)-entry of CAB using exactly six numerical
multiplications. 

P =
















1 0 0
0 0 1
0 1 0

,

X 0

2
1
3

= −















.

A A
1
1
2

0
2
0
3

−
















= =















,

(a)

(

x x x x x
x x x x
x x x x x

1 2 3 4 5

1 2 3 5

1 2 3 4 5

2 2 0
2 2 0

2 4 2 3 0

+ − + + =
+ + + =
+ − + + =

♦ bb) x x x x x
x x x x x
x x x x

1 2 3 4 5

1 2 3 4 5

1 2 3 4

2 3 2 0
2 3 4 0

2 3 0
3

+ − + + =
− + + + =

− − + + =
xx x x x1 3 4 57 2 0+ + + =

(c) x x x x
x x x
x x x x

x x x x

1 2 3 5

2 3 5

2 3 4 5

1 3 4 5

5 2
4 1

1
2 4 6

+ − − =
+ − = −
+ + − = −
− + + =

♦♦(d) 2 1
3 2 2

2 2
2

1 2 3 4

1 2 3 4

1 2 3 4

1 2

x x x x
x x x x
x x x x
x x

+ − − = −
+ + − = −

− − + + =
− − ++ =2 34x

(a) (b)x y z
x y
x y z

x y z
x y z
x y z

+ + =
+ =
− − =

− − = −
+ + =
+ + =

2
2 3

3 0

4 4
2 5 2

2 0

♦

(a)

(b)

3 2 1
3 0

2 5
2

1 2 3 4

1 2 4

1 2 3

1 2 3 4

x x x x
x x x
x x x
x x x x

+ − + =
− + =
− − =

− + − + =♦ 66
2 2 1
3 2 0

1 2 3 4

1 2 4

x x x x
x x x

+ − + =
− + =

A
a

a
= 





0
0

A
a
c a

= 





0

0 0
1 0







A
a b

a
= 



0

0 1
0 0







and  verify the following facts 

from Theor

D =
−









3 1 2
1 0 5

,

eem 1.
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16. (a) Compute AB, using the indicated block
partitioning. 

¨(b) Partition A and B in part (a) differently and
compute AB again.

(c) Find A2 using the partitioning in part (a) and
then again using a different partitioning. 

17. In each case compute all powers of A using the
block decomposition indicated.

18. Compute the following using block multiplica-
tion (all blocks k ´ k).

19. (a) If A has a row of zeros, sh ow that the same
is true of AB for any B. 

(b) If B has a column of zeros, show that the
same is true of AB for any A. 

20. Let A denote an m ´ n matrix. 
(a) If AX = 0 for every n ´ 1 matrix X, show

that A = 0. 
¨(b) If YA = 0 for every 1 ´ m matrix Y, show

that A = 0. 

21. (a) If and AU = 0, show that A = 0.

(b) Let U be such that AU = 0 implies that 
A = 0. If AU = BU, show that A = B. 

22. Simplify the following expressions where A, B,
and C represent matrices. 
(a) A(3B - C ) + (A - 2B)C + 2B(C + 2A)

¨(b) A(B + C - D) + B(C - A + D) - (A + B)C
+ (A - B)D

(c) AB(BC - CB ) + (CA - AB )BC + CA(A - B)C

¨(d) (A - B)(C - A ) + (C - B )(A - C ) + (C - A)2

23. If where a ¹ 0, show that A factors 

in the form .

24. If A and B commute with C, show that the same
is true of: 
(a) A + B ¨(b) kA, k any scalar 

25. If A is any matrix, show that AAT and ATA are
symmetric. 

¨26. If A and B are symmetric, show that AB is
symmetric if and only if AB = BA. 

27. If A is a 2 ´ 2 matrix, show that ATA = AAT if 

and only if A is symmetric or for
some a and b. 

28. (a) Find all symmetric 2 ´ 2 matrices A such
that A2

= 0. 
¨(b) Repeat (a) if A is 3 ´ 3.

(c) Repeat (a) if A is n ´ n. 
29. Show that there exist no 2 ´ 2 matrices A and B

such that AB - BA = I. [Hint: Examine the 
(1, 1)- and (2, 2)-entries.]

¨30. Let B be an n ´ n matrix. Suppose AB = 0 for
some nonzero m ´ n matrix A. Show that no 
n ´ n matrix C exists such that BC = I. 

31. (a) If A and B are 2 ´ 2 matrices whose rows
sum to 1, show that the rows of AB also sum
to 1. 

¨(b) Repeat part (a) for the case where A and B
are n ´ n. 

32. Let A and B be n ´ n matrices for which the
systems of equations AX = 0 and BX = 0 each
have only the trivial solution X = 0. Show that
the system (AB )X = 0 has only the trivial
solution.

33. The trace of a square matrix A, denoted tr A, is
the sum of the elements on the main diagonal
of A. Show that, if A and B are n ´ n matrices: 
(a) tr(A + B) = tr A + tr B.

¨(b) tr(kA ) = k tr(A) for any number k.

(c) tr(AT) = tr(A).
(d) tr(AB ) = tr(BA ).

¨(e) tr(AAT) is the sum of the squares of all
entries of A.

34. Show that AB - BA = I is impossible. [Hint: See
the preceding exercise.]

A
a b
b a

=
−







A
x

y z
w

= 











1 0
1 0

A
a b
c d

= 





U =
−







1 2
0 1

,

(a) (b)

(c)

I X
Y I

I
Y I

I X
I

I X
I

I

−


















−





0
0 0

    
♦

[ XX I X I X X I

I X
I

n

T T T

n

][ ] ]

,

        

 any  

♦

♦

(d) [ ][

(e) (

−

−






≥
0

1
ff ) 0

0
1

X
I

n
n







≥,  any  

(a) (b)A A= −
−

















=

− −

−










1 0 0
1 1 1
1 1 1

1 1 2 1
0 1 0 0
0 0 1 1
0 0 0 1

♦








A B=

−

















=
−

−


















2 1 3 1
1 0 1 2
0 0 1 0
0 0 0 1

1 2 0
1 0 0
0 5 1
1 1 0
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35. A square matrix P is called an idempotent if 
P 2

= P. Show that:
(a) 0 and I are idempotents. 

(b) are 

idempotents. 

(c) If P is an idempotent, so is I - P, and 
P(I - P) = 0. 

(d) If P is an idempotent, so is PT. 

¨(e) If P is an idempotent, so is Q = P + AP - PAP
for any square matrix A (of the same size 
as P ). 

(f ) If A is n ´ m and B is m ´ n, and if AB = In,
then BA is an idempotent. 

36. Let A and B be n ´ n diagonal matrices
(all entries off the main diagonal are zero). 

(a) Show that AB is diagonal and AB = BA. 
(b) Formulate a rule for calculating XA

if X is m ´ n. 
(c) Formulate a rule for calculating AY

if Y is n ´ k. 
37. If A and B are n ´ n matrices, show that:

(a) AB = BA if and only if 
(A + B )2

= A2
+ 2AB + B2. 

¨(b) AB = BA if and only if 
(A + B)(A - B) = (A - B )(A + B). 

(c) AB = BA if and only if ATBT
= BTAT.

38. Prove the following parts of Theorem 1. 
(a) Part 1

¨(b) Part 2
(c) Part 4
(d) Part 5

1 1
0 0

1 0
1 0

1
2

1 1
1 1



















, ,  and 
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Section 2.3 Matrix Inverses 
Three basic operations on matrices, addition, multiplication, and subtraction, are
analogues for matrices of the same operations for numbers. In this section we
introduce the matrix analogue of numerical division. 

To begin, consider how a numerical equation 
ax = b

is solved when a and b are known numbers. If a = 0, there is no solution (unless 
b = 0). But if a ¹ 0, we can multiply both sides by the inverse a-1 to obtain the solution
x = a-1b. This multiplication by a-1 is commonly called dividing by a, and the property
of a-1 that makes this work is that a-1a = 1. Moreover, we saw in Section 2.2 that the
role that 1 plays in arithmetic is played in matrix algebra by the identity matrix I. 

This suggests the following definition. If A is a square matrix, a matrix B is called
an inverse of A if and only if

A matrix A that has an inverse is called an invertible matrix.4

Example 1
Show that is an inverse of

Solution
Compute AB and BA.

Hence AB = I = BA, so B is indeed an inverse of A. 

AB BA= 





−





= 





=
−











0 1
1 1

1 1
1 0

1 0
0 1

1 1
1 0

0 1
1 1 = 





1 0
0 1

A = 





0 1
1 1

.B =
−





1 1
1 0

AB I BA I= =and

4Only square matrices have inverses. Even though it is plausible that nonsquare matrices A and B exist
such that AB = Im and BA = In , where A is m ´ n and B is n ´ m, we claim that this forces n = m. Indeed,
if m > n there exists a nonzero column X such that AX = 0 (by Theorem 1 §1.3), so X = InX = (BA)X
= B(AX ) = B(0) = 0, a contradiction. Hence m £ n. Similarly, the condition AB = Im implies that n £ m.
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Example 2
Show that has no inverse. 

Solution

Let denote an arbitrary 2 ´ 2 matrix. Then 

so AB has a row of zeros. Hence AB cannot equal I for any B. 

Example 2 shows that it is possible for a nonzero matrix to have no inverse. But if 
a matrix does have an inverse, it has only one. 

Theorem 1
If B and C are both inverses of A, then B = C.

Proof 
Since B and C are both inverses of A, we have CA = I = AB. 
Hence B = IB = (CA)B = C(AB ) = CI = C. 

If A is an invertible matrix, the (unique) inverse of A is denoted as A -1. Hence A -1

(when it exists) is a square matrix of the same size as A with the property that 

These equations characterize A -1 in the following sense: If somehow a matrix B can
be found such that AB = I = BA, then A is invertible and B is the inverse of A; in
symbols, B = A -1. This gives us a way of verifying that the inverse of a matrix exists.
Examples 3 and 4 offer illustrations.

Example 3
If show that A3

= I and so find A -1. 

Solution

We have and so 

Hence A3 
= I, as asserted. This can be written as A2A = I = AA2, so it shows

that A2 is the inverse of A. That is,

The following example gives a useful formula for the inverse of a 2 ´ 2 matrix. 

A A− = =
−
−







1 2 1 1
1 0

.

A A A I3 2 1 1
1 0

0 1
1 1

1 0
0 1

= =
−
−







−
−







= 





=

A2 0 1
1 1

0 1
1 1

1 1
1 0

=
−
−







−
−







=
−
−






,

A =
−
−







0 1
1 1

,

AA I A A I− −= =1 1and

AB
a b
c d a c b d

= 











=
+ +







0 0
1 3

0 0
3 3

B
a b
c d

= 





A = 





0 0
1 3
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Example 4
If and ad - bc ¹ 0, show that .

Solution 
We verify that AA -1

= I and leave A -1A = I to the reader. 

Inverses and Linear Systems
Matrix inverses can be used to solve certain systems of linear equations. Recall
(Example 7 §2.2) that a system of linear equations can be written as a single matrix
equation

where A and B are known matrices and X is to be determined. If A is invertible, we
multiply each side of the equation on the left by A -1 to get 

This gives the solution to the system of equations (the reader should verify that 
X = A -1B really does satisfy AX = B ). Furthermore, the argument shows that if 
X is any solution, then necessarily X = A -1B, so the solution is unique. Of course the
technique works only when the coefficient matrix A has an inverse. This proves
Theorem 2.

Theorem 2
Suppose a system of n equations in n variables is written in matrix form as 

If the n ´ n coefficient matrix A is invertible, the system has the unique solution 

Example 5
If show that and use it to solve the 

following system of linear equations. 

x x x
x x x
x x

1 2 3

1 2 3

1 3

2 2 3
2 0

2

− + =
+ + =

+ = −

A − =
−

− −
− −

















1

1 2 4
1 1 3
1 2 5

,A =
−













1 2 2
2 1 1
1 0 1

,

X A B= −1

AX B=

A AX A B

IX A B

X A B

− −

−

−

=

=

=

1 1

1

1

AX B=

a b
c d ad bc

d b
c a ad bc

a b
c d

d b
c a





 −

−
−











 =

−






−
−

1 1





=
−

−
−







=
1 0

0ad bc
ad bc

ad bc
I

A
ad bc

d b
c a

− =
−

−
−











1 1
A

a b
c d

= 
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Solution
The verification that AA -1

= I and A -1A = I is left to the reader. The matrix
form of the system of equations is AX = B, where A is as before and 

Theorem 2 gives the solution

Thus, x1 = 11, x2 = -9, and x3 = -13.

An Inversion Method 
Given a particular n ´ n matrix A, it is desirable to have an efficient technique to
determine whether A has an inverse and, if so, to find that inverse. For simplicity,
we shall derive the technique for 2 ´ 2 matrices; the n ´ n case is entirely
analogous.

Given the invertible 2 ´ 2 matrix A, we determine A -1 from the equation 
AA -1

= I. Write 

where x1, y1, x2, and y2 are to be determined. Equating columns in the equation 
AA -1

= I gives 

These are systems of linear equations, each with A as coefficient matrix. Since A is
invertible, each system has a unique solution by Theorem 2. But this means that the
reduced row-echelon form R of A cannot have a row of zeros, and so is the identity
matrix (R is square). Hence, there is a sequence of elementary row operations carry-
ing A to the 2 ´ 2 identity matrix I. This sequence carries the augmented matrices
of both systems to reduced row-echelon form and so solves the systems:

Hence, we can do both calculations simultaneously. 

This can be written more compactly as follows:

In other words, the sequence of row operations that carries A to I also carries 
I to A -1. This is the desired algorithm. 

[ ] [ ]A I I A→ −1

A I
x x
y y

1 0
0 1

1 2

1 2







→ 





A I
x
y

A I
x
y

1
0

0
1

1

1

2

2







→ 











→ 





A
x
y

A
x
y

1

1

2

2

1
0

0
1







= 











= 





and

A
x x
y y

− = 





1 1 2

1 2

X A B= =
−

− −
− −















−















= −
−















−1
1 2 4
1 1 3
1 2 5

3
0
2

11
9

13

X
x
x
x

B=














=
−















1

2

3

3
0
2
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Matrix Inversion Algorithm
If A is a (square) invertible matrix, there exists a sequence of elementary row
operations that carry A to the identity matrix I of the same size, written A ® I. This
same series of row operations carries I to A-1; that is, I ® A-1. The algorithm can be
summarized as follows:

where the row operations on A and I are carried out simultaneously. 

Example 6
Use the inversion algorithm to find the inverse of the matrix 

Solution 
Apply elementary row operations to the double matrix

so as to carry A to I. First interchange rows 1 and 2. 

Next subtract 2 times row 1 from row 2, and subtract row 1 from row 3. 

Continue to reduced row-echelon form. 

Hence as is readily verified. 

Given any n ´ n matrix A, Theorem 1 §1.2 shows that A can be carried by
elementary row operations to a matrix R in reduced row-echelon form. If R = I,
the matrix A is invertible (this will be proved in the next section), so the algo-
rithm produces A -1. If R ¹ I, then R has a row of zeros (it is square), so no system
of linear equations AX = B can have a unique solution. But then A is not
invertible by Theorem 2. Hence, the algorithm is effective in the sense 
conveyed in Theorem 3.

A− =
− −

−
− −















1 1
2

3 3 11
1 1 3
1 1 1

,

1 0 11 4 7 0
0 1 3 1 2 0
0 0 2 1 1 1

1 0 0

0 1 0

0 0 1

3
2

3
2

11
2

1
2

1
2

3
2

1

−
− −
− −















− −

−

22
1

2
1

2
− −

















1 4 1 0 1 0
0 1 3 1 2 0
0 1 1 0 1 1

−
− −
− −















1 4 1 0 1 0
2 7 1 1 0 0
1 3 0 0 0 1

−













[ ]A I = −














2 7 1 1 0 0
1 4 1 0 1 0
1 3 0 0 0 1

A = −














2 7 1
1 4 1
1 3 0

[ ] [ ]A I I A→ −1
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Theorem 3
If A is an n ´ n matrix, either A can be reduced to I by elementary row operations
or it cannot. In the first case, the algorithm produces A -1; in the second case, A -1

does not exist. 

Properties of Inverses 
Sometimes the inverse of a matrix is given by a formula. Example 4 is one
illustration, Examples 7 and 8 provide two more. Given a square matrix A, recall that
if a matrix B can be found such that AB = I = BA, then A is invertible and A-1

= B.

Example 7
If A is an invertible matrix, show that the transpose AT is also invertible. 
Show further that the inverse of AT is just the transpose of A -1; in symbols, 
(AT )-1

= (A -1)T. 
Solution 
A -1 exists (by assumption). Its transpose (A -1)T is the candidate proposed for
the inverse of AT. We test it as follows:

Hence (A -1)T is indeed the inverse of AT; that is, (AT )-1
= (A -1)T. 

Example 8
If A and B are invertible n ´ n matrices, show that their product AB is also
invertible and (AB )-1

= B -1A -1.
Solution 
We are given a candidate for the inverse of AB, namely B -1A -1. We test it as
follows:

Hence B -1A-1 is the inverse of AB ; in symbols, (AB )-1
= B -1A -1.

We now collect several basic properties of matrix inverses for reference.

Theorem 4
All the following matrices are square matrices of the same size.

1 1. I I I
A A

 is invertible and .
2. If  is invertible, so is 

−

−
=

11 1 1, and .
3. If  and  are invertible, so is , a

( )A A
A B AB

− − =
nnd .

4. If    are all invertible, so
( )

, , ,
AB B A

A A A k

− − −=1 1 1

1 2 �   is their product , and 
( ) = 

1 2

1 2
1

A A A
A A A A A A

k

k k

�
� �− − − −1

2
1

1
1..

5. If  is invertible, so is  for , and A A k A Ak k≥ =− −1 1 1( ) ( )kk

A a aA
.

6. If  is invertible and  is a number, then  is in≠ 0 vvertible and 
If  is invertible, so is its

( ) .
.

aA A
A

a
− −=1 1 1

7   transpose , and .A A AT T T( ) ( )− −=1 1

( )( ) ( )

( )( ) ( )

B A AB B A A B B IB B B I

AB B A A BB A

− − − − − −

− − − −

= = = =

=

1 1 1 1 1 1

1 1 1 11 1 1= = =− −AIA AA I

A A A A I I

A A AA I I

T T T T

T T T T

( ) ( )

( ) ( )

− −

− −

= = =

= = =

1 1

1 1

Chapter-2.qxd  12/4/01  11:33 AM  Page 55



Proof

1. This is an immediate consequence of the formula I 2
= I. 

2. The equations AA -1
= I = A -1A show that A is the inverse of A -1; 

in symbols, (A -1)-1
= A. 

3. This is Example 8. 
4. Use induction on k. If k = 1, there is nothing to prove because the con-

clusion reads (A1)
-1
= A1

-1. If k = 2, the result is just property 3. If k > 2,
assume inductively that (A1A2

… Ak -1)
-1
= A -1

k -1
… A2

-1A1
-1. We apply this

fact together with property 3 as follows:

Here property 3 is applied to get the second equality. This is the conclu-
sion for k matrices, so the proof by induction is complete.

5. This is property 4 with A1 = A2 =
…= Ak = A.

6. This is left as Exercise 28.
7. This is Example 7.

Part 7 of Theorem 4 together with the fact that (AT )T
= A give 

Corollary
A square matrix A is invertible if and only if AT is invertible.

Example 9
Find A if 

Solution
By Theorem 4(2) and Example 4

Hence 

The reversal of the order of the inverses in properties 3 and 4 of Theorem 4 is 
a consequence of the fact that matrix multiplication is not commutative. Another
manifestation of this comes when matrix equations are dealt with. If a matrix
equation B = C is given, it can be left-multiplied by a matrix A to yield AB = AC.
Similarly, right-multiplication gives BA = CA. However, we cannot mix the two: 
If B = C, it need not be the case that AB = CA.

We conclude this section with an important theorem that collects a number 
of conditions all equivalent5 to invertibility. It will be referred to frequently below. 

A I AT = +
−





=
−





=
−







2
0 1
1 2

2 1
1 4

2 1
1 4

, . so 

( ) [( ) ]A I A IT T− = − =
−







=
−





− −
−

2 2
2 1
1 0

0 1
1 2

1 1
1

( ) .A IT − =
−







−2
2 1
1 0

1

[ ] [( ) ]

( )

(

A A A A A A A A

A A A A

A A

k k k k

k k

k

1 2 1
1

1 2 1
1

1
1 2 1

1

1

� �

�
−

−
−

−

−
−

−

−

=

=

= kk A A−
− − −

1
1

2
1

1
1� )
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5If p and q are statements, we say that p implies q (written p Þ q) if q is true whenever p is true. The
statements are called equivalent if both p Þ q and q Þ p (written p Û q, spoken “p if and only if q”).

Chapter-2.qxd  12/4/01  11:33 AM  Page 56



Theorem 5 
The following conditions are equivalent for an n ´ n matrix A:

1. A is invertible.
2. The homogeneous system AX = 0 has only the trivial solution X = 0.
3. A can be carried to the identity matrix In by elementary row operations.
4. The system AX = B has at least one solution X for every choice of 

column B.
5. There exists an n ´ n matrix C such that AC = In .

Proof 
We show that each of these conditions implies the next, and that (5) implies (1).

(1) Þ (2). If A -1 exists then AX = 0 gives X = InX = A -1AX = A -10 = 0.
This is (2).

(2) Þ (3). Assume that (2) is true. Certainly A ® R by row operations
where R is a reduced, row-echelon matrix; we show that R = In. Suppose on
the contrary that R ¹ In. Then R has a row of zeros (being square), and 
we consider the augmented matrix [A 0] of the system AX = 0. Then 
[A 0] ® [R 0] is the row-echelon form and [R 0] also has a row of zeros.
Since A is square, this means that there is at least one non-leading variable,
and hence at least one parameter. Thus AX = 0 has infinitely many solu-
tions, contrary to (2). So R = In after all.

(3) Þ (4). Consider the augmented matrix [A B ] of the system. Using (3)
let A ® I by a sequence of row operations. Then these same operations
carry [A B ] ® [I C ] for some column C. Hence the system AX = B has 
a solution (in fact unique) by Gaussian elimination.

(4) Þ (5). Write In = [E1 E2
… En] where E1, E2, … , En are the columns 

of In. For each j = 1, 2, … , n, the system AX = Ej has a solution Cj by (4), so 
ACj = Ej. Now let C = [C1 C2

… Cn] be the n ´ n matrix with these matrices
Cj as its columns. Then the definition of matrix multiplication gives (5): 

(5) Þ (1). Assume that (5) is true so that AC = In for some matrix C. Then 
CX = 0 implies X = 0 (because X = InX = ACX = A0 = 0). Thus condition (2)
holds for the matrix C rather than A. Hence the argument above that 
(2) Þ (3) Þ (4) Þ (5) (with A replaced by C ) shows that a matrix C ¢ exists
such that CC ¢ =ÿI. But then 

Thus CA = CC ¢= I which, together with AC = I, shows that C is the inverse
of A. This proves (1).  

The proof of (5) Þ (1) in Theorem 5 shows that if AC =ÿI for square matrices,
then necessarily CA = I, and hence that C and A are inverses of each other. We
record this important fact for reference. 

Corollary
If A and C are square matrices such that AC =ÿI, then also CA =ÿI. In particular,
both A and C are invertible, C =ÿA -1, and A =ÿC -1. 

A AI A CC AC C IC Cn= = ′ = ′ = ′ = ′( ) ( )

AC A C C C AC AC AC E E E In n n n= = = =[ ] [ ] [ ]1 2 1 2 1 2� � �
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Observe that the Corollary is false if A and C are not square matrices.
For example, we have

In fact, it is verified in the footnote on page 50 that if AB = Im and BA = In, where A
is m ´ n and B is n ´ m, then m = n and A and B are (square) inverses of each other.

Example 10
Show that has no inverse.

Solution 

Observe that AX = 0 where Hence A has no inverse by Part (2) of

Theorem 5.
Note that we do not need Theorem 5 for this: If A -1 exists then left-
multiplying AX = 0 by A -1 gives A -1AX = A -10, that is IX = 0. This means 
that X = 0, which is not the case. So A -1 does not exist.

Exercises 2.3

X =
−







4
3

.

A = 





6 8
15 20

1 2 1
1 1 1

1 1
1 1
0 1

1 1
1 1
0 1

1 2 1
1 1 12







−
−















=
−

−














I but 





≠ I3
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1. In each case, show that the matrices are inverses
of each other.

2. Find the inverse of each of the following 
matrices.

3. In each case, solve the systems of equations by
finding the inverse of the coefficient matrix.

4. Given :A− =
−

−















1
1 1 3
2 0 5
1 1 0

(a) (b)
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(a) Solve the system of equations 

¨(b) Find a matrix B such that

(c) Find a matrix C such that

5. Find A when

6. Find A when:

7. Given 

, express the variables 

x1, x2, and x3 in terms of z1, z2, and z3.

8. (a) In the system , substitute the new

variables x¢ and y¢ given by .

Then find x and y.

¨(b) Explain part (a) by writing the equations as 

. What is the 

relationship between A and B? Generalize.

9. In each case either prove the assertion or give
an example showing that it is false.

(a) If A ¹ÿ0 is a square matrix, then A is
invertible.

¨(b) If A and B are both invertible, then A +ÿB
is invertible.

(c) If A and B are both invertible, then (A -1B)T

is invertible.
¨(d) If A4

= 3I, then A is invertible.

(e) If A2
= A and A ¹ÿ0, then A is invertible.

¨(f ) If AB = B for some B ¹ÿ0, then A is invertible.
(g) If A is invertible and skew symmetric 

(AT
= -A), the same is true of A -1.

1̈0. If A, B, and C are square matrices and AB = I 
=ÿCA, show that A is invertible and B = C = A -1.

11. Suppose CA = Im, where C is m × n and A is
n ´ m. Consider the system AX = B of 
n equations in m variables.
(a) Show that this system has a unique solution

CB if it is consistent.

¨(b) If , 

find X (if it exists) when (i) ; and 

(ii) . 

12. Verify that satisfies A2
- 3A + 2I = 0,

and use this fact to show that 

13. Let . Compute QQT and 

so find Q-1.

14. Let . Show that each of U, -U, and 

- I2 is its own inverse and that the product of
any two of these is the third.

15. Consider

Find the inverses by computing (a) A6; ¨(b) B4; 
and (c) C 3.

A B C= −






=
−





=














1 1
1 0

0 1
1 0

0 1 0
0 0 1
5 0 0

, , .

U = 





0 1
1 0

Q

a b c d
b a d c
c d a b
d c b a

=

− − −
−

−
−



















A I A− = −1 1
2 3( ).

A =
−





1 1
0 2

B =














7
4

22

B =
















1
0
3

C A=
−

−






=
−
−

−















0 5 1
3 0 1

2 3
1 2
6 10

 and 

A
x
y

x
y

B
x
y







= 











=
′
′







7
1

 and 

x x y
y x y

= − ′ + ′
= ′ − ′

5 4
4 3

3 4 7
4 5 1
x y
x y

+ =
+ =

z
z
z

y
y
y

1

2

3

1

2

3

1 1 1
2 3 0
1 1 2

















=
−
−

− −

































x
x
x

y
y
y

1

2

3

1

2

3

3 1 2
1 0 4
2 1 0

















=
−































 and 

(a) (b)A A− −=
−

−

















=
−















1 1

1 1 3
2 1 1
0 2 2

0 1 1
1 2 1
1 0 1

♦

(a)

(c)

( ) ( )

( )

3
1 1
0 1

2
1 1
2 3

3
2 0

1
1

1

A A

I A

T−
−

−

=
−





=
−





+ =

♦(b)

11 1

2
2 1
1 1

1 1
0 1

1

1

−






− = 





−











−

−

♦(d)

(e)

( )I A

A

T

 == 

















= 





−

−

2 3
1 1

1 0
2 1

1 0
2 2

2

1

♦(f )

(g)

 

 

A

A IT( )−−

−

= 





− = − 





1

1

2
1 1
2 3

2 2
1 1
1 0

♦(h) ( )A I T

CA =
−





1 2 1
3 1 1

.

AB =
−















1 1 2
0 1 1
1 0 0

.

AX = −














1
1
3

.

59
Section 2.3 Matrix Inverses

Chapter-2.qxd  12/4/01  11:33 AM  Page 59



60
Chapter 2 Matrix Algebra

16. In each case, find A -1 in terms of c.

17. If c ¹ 0, find the inverse of in terms 

of c.

¨18. Find the inverse of for any real 

number u.

19. Show that A has no inverse when 
(a) A has a row of zeros; 

¨(b) A has a column of zeros; 
(c) each row of A sums to 0; 

¨(d) each column of A sums to 0.

20. Let A denote a square matrix.
(a) Let YA = 0 for some matrix Y ¹ 0. Show that

A has no inverse.

(b) Use part (a) to show that (i) ; and

¨(ii) have no inverse. 

[Hint: For part (ii) compare row 3 with 
the difference between row 1 and row 2.]

21. If A is invertible, show that 

(a) A2
¹ 0; 

(b) Ak
¹ 0 for all k = 1, 2, … ;

(c) AX = AY implies X = Y ;
¨(d) PA = QA implies P = Q.

22. Suppose AB = 0, where A and B are square
matrices. Show that:
(a) If one of A and B has an inverse, the other 

is zero.
¨(b) It is impossible for both A and B to have

inverses.

(c) (BA)2
= 0.

23. (a) Show that is invertible if and only if 

a ¹ 0 and b ¹ 0. Describe the inverse.

(b) Show that a diagonal matrix is invertible if
and only if all the main diagonal entries are
nonzero. Describe the inverse.

(c) If A and B are square matrices, show that 

(i) the block matrix is invertible if 

and only if A and B are both invertible; and 

(ii) .

(d) Use part (c) to find the inverses of:

(e) Extend part (c) to block diagonal
matrices—that is, matrices with square
blocks down the main diagonal and zero
blocks elsewhere.

24. (a) Show that is invertible if and only if

a ¹ 0 and b ¹ 0.
¨(b) If A and B are square and invertible, show

that (i) the block matrix is 

invertible for any X; and 

(ii)

(c) Use part (b) to invert (i) ; 

and ¨(ii) .

25. If A and B are invertible symmetric matrices
such that AB = BA, show that A -1, AB, AB -1, and
A -1B -1 are also invertible and symmetric.

26. (a) Let 

Verify that AB = CA, A is invertible, but 
B ¹ C. (See Exercise 21.)
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¨(b) Find 2 ´ 2 matrices P, Q, and R such that
PQ = PR, P is not invertible, and Q ¹ R. 
(See Exercise 21.)

27. Let A be an n ´ n matrix and let I be the n × n
identity matrix.

(a) If A2
= 0, verify that (I - A)-1

= I + A.

(b) If A3
= 0, verify that (I - A)-1

= I + A + A2.

(c) Using part (b), find the inverse of

¨(d) If An
= 0, find the formula for (I - A)-1.

28. Prove property 6 of Theorem 4; If A is
invertible and a ¹ 0, then aA is invertible and

.

29. Let A, B, and C denote n ´ n matrices. Show that:
(a) If A and AB are both invertible, B is

invertible.
¨(b) If AB and BA are both invertible, A and B

are both invertible. [Hint: See Exercise 10.]
(c) If A, C, and ABC are all invertible, B is

invertible.

30. Let A and B denote invertible n ´ n matrices.

(a) If A -1
= B -1, does it mean that A = B?

Explain.

¨(b) Show that A = B if and only if A -1B = I.

31. Let A, B, and C be n ´ n matrices, with A and B
invertible. Show that

¨(a) If A commutes with C, then A -1 commutes
with C.

(b) If A commutes with B, then A -1 commutes
with B -1.

32. Let A and B be square matrices of the same size.

(a) Show that (AB)2
= A2B2 if AB = BA.

¨(b) If A and B are invertible and (AB )2
= A2B2,

show that AB = BA.

(c) If show that 

(AB)2
= A2B2 but AB ¹ BA.

33. Show that the following are equivalent for n ´ n
matrices A and B.
(i) A and B are both invertible.

¨(ii) AB is invertible.

34. Consider

(a) Show that A is not invertible by finding 
a nonzero 1 ´ 3 matrix Y such that YA = 0.
[Hint: Row 3 of A equals 2(row 2) – 3(row 1).]

¨(b) Show that B is not invertible. 
[Hint: Column 3 = 3(column 2) – column 1.]

¨35. Show that a square matrix A is invertible if and
only if it can be left-cancelled: AB = AC implies
B = C.

36. If U 2
= I, show that I + U is not invertible unless

U = I.

37. (a) If J is the 4 ´ 4 matrix with every entry 1,
show that is self-inverse and 
symmetric.

(b) If X is n ´ m and satisfies XTX = Im, show
that In - 2XXT is self-inverse and symmetric.

38. An n ´ n matrix P is called an idempotent if 
P 2

= P. Show that:

(a) I is the only invertible idempotent.
¨(b) P is an idempotent if and only if I - 2P is

self-inverse.
(c) U is self-inverse if and only if U = I - 2P for

some idempotent P.
(d) I - aP is invertible for any a ¹ 1, and

39. If A2
= kA, where k ¹ 0, show that A is invertible

if and only if A = kI.

40. Let A and B denote n ´ n invertible matrices.

(a) Show that A -1
+ B -1

= A -1(A + B)B -1.

¨(b) If A + B is also invertible, show that A-1
+ B-1

is invertible and find a formula for 
(A-1

+ B-1)-1.

41. Let A and B be n ´ n matrices, and let I be the 
n ´ n identity matrix.

(a) Verify that A(I + BA) = (I + AB)A and that 
(I + BA)B = B(I + AB).

(b) If I + AB is invertible, verify that I + BA is
also invertible and that 
(I + BA)-1

= I - B(I + AB)-1A.

( ) .I aP I a
a

P− = +
−







−1

1

I J− 1
2

A B=
−
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Section 2.4 Elementary Matrices
It is now evident that elementary row operations play a fundamental role in linear 
algebra by providing a general method for solving systems of linear equations. This
leads to the matrix inversion algorithm. It turns out that these elementary row oper-
ations can be performed by left-multiplying by certain invertible matrices (called
elementary matrices). This section is devoted to a discussion of this useful fact and
some of its consequences.

Recall that the elementary row operations are of three types:

Type I: Interchange two rows.
Type II: Multiply a row by a nonzero number.
Type III: Add a multiple of a row to a different row.

An n ´ n matrix is called an elementary matrix if it is obtained from the n ´ n
identity matrix by an elementary row operation. The elementary matrix so
constructed is said to be of type I, II, or III when the corresponding row operation
is of type I, II, or III.

Example 1

Verify that are elementary

matrices.
Solution
E1 is obtained from the 3 ´ 3 identity I3 by interchanging the first two rows, so
it is an elementary matrix of type I. Similarly, E2 comes from multiplying the
third row of I3 by 9 and so is an elementary matrix of type II. Finally, E3 is an
elementary matrix of type III; it is obtained by adding 5 times the third row of
I3 to the first row.

Now consider the following three 2 ´ÿ2 elementary matrices E1, E2, and E3

obtained by doing the indicated elementary row operations to I2.

If is any 2 ´ 3 matrix, we compute E1A, E2A, and E3A:

Observe that E1A is the matrix resulting from interchanging rows 1 and 2 of A and
that this row operation is the one that was used to produce E1 from I2. Similarly,

E A
a b c
p q r

p q r
a b c

E A
k

a b c
p q

1

2
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1 0

1 0
0

= 











= 
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 rr

a b c
kp kq kr
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k a b c
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=
+ +

3

1
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E I

E
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.
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E2A is obtained from A by the same row operation that produced E2 from I2

(multiplying row 2 by k). Finally, the same is true of E3A: It is obtained from A
by the same operation that produced E3 from I2 (adding k times row 2 to row 1).
This phenomenon holds for arbitrary m ´ n matrices A.

Theorem 1
Let A denote any m ´ n matrix and let E be the m ´ m elementary matrix obtained
by performing some elementary row operation on the m ´ m identity matrix I. If
the same elementary row operation is performed on A, the resulting matrix is EA.

Proof 
We prove it only for E of type III (types I and II are left as Exercise 14). 
If E is obtained by adding k times row p of Im to row q, we must show that
EA is obtained from A in the same way. Let R1, R2, … , Rm and K1, K2, … , Km

denote the rows of E and I, respectively. Then row i of EA = Ri A = Ki A
= row i of A if i ¹ q. However, if i = q: row q of EA = Rq A = (Kq + kKp)A
= Kq A + kKp A. This is row q of A plus k times row p of A, as required.

Example 2

Given , find an elementary matrix E such that EA is the

result of subtracting 7 times row 1 from row 3.

Solution 

The elementary matrix is , obtained by doing the given row

operation to I3. The product

is indeed the result of applying the operation to A.

Given any elementary row operation, there is another row operation (called its
inverse) that reverses the effect of the first operation. The inverses are described in
the accompanying table.

Type Operation Inverse operation

I Interchange rows p and q Interchange rows p and q
II Multiply row p by c ¹ÿ0 Multiply row p by 
III Add k times row p to Subtract k times row p

row q (p ¹ q) from row q

Note that type I operations are self-inverse.

1
c

EA =
−





























=
− −

1 0 0
0 1 0
7 0 1

4 1 2 1
3 0 1 6
5 7 9 8

4 1 2 1
3 0 1 6

23 0 5 1











E =
−















1 0 0
0 1 0
7 0 1

A =














4 1 2 1
3 0 1 6
5 7 9 8
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Theorem 2
Every elementary matrix E is invertible, and the inverse is an elementary matrix 
of the same type. More precisely:

E -1 is the elementary matrix obtained from I by the inverse of the row operation
that produced E from I.

Proof
E is the result of applying a row operation r to I. Let E ¢denote the matrix
obtained by applying the inverse operation r¢ to I. By Theorem 1, applying
r to a matrix A produces EA; then applying r¢ to EA gives E ¢(EA):

But r¢ reverses the effect of r, so applying r followed by r¢ does not change A.
Hence E ¢EA = A. In particular, taking A = I gives E ¢E =ÿI. A similar
argument shows EE ¢ =ÿI, so E -1

= E ¢ as required.

Example 3
Write down the inverses of the elementary matrices E1, E2, and E3 in Example 1.
Solution

The matrices are so they 

are of types I, II, and III, respectively. Hence Theorem 2 gives

Now suppose a sequence of elementary row operations is performed on an m ´ n
matrix A, and let E1, E2, … , Ek denote the corresponding elementary matrices.
Theorem 1 asserts that A is carried to E1A under the first operation; in symbols,
A ® E1A. Then the second row operation is applied to E1A (not to A) and the result
is E2(E1A), again by Theorem 1. Hence the reduction can be described as follows:

In other words, the net effect of the sequence of elementary row operations is to left-
multiply by the product U = Ek

… E2E1 of the corresponding elementary matrices
(note the order). The result is

Moreover, the matrix U can be easily constructed. Apply the same sequence of
elementary operations to the n ´ n identity matrix I in place of A:

In other words, the sequence of elementary row operations that carries A ® UA also
carries I ® U. Hence it carries the double matrix [A  I ] to [UA  U ]:

just as in the matrix inversion algorithm. This simple observation is surprisingly
useful, and we record it as Theorem 3.

[ ] [ ]A I UA U→
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Theorem 3
Let A be an m ´ n matrix and assume that A can be carried to a matrix B by
elementary row operations. Then:

1. B = UA where U is an invertible m ´ m matrix.
2. U = Ek Ek-1

… E2E1 where E1, E2, … , Ek -1, Ek are the elementary matrices
corresponding (in order) to the elementary row operations that carry A ® B.

3. U can be constructed without finding the Ei by

In other words, the operations that carry A ® UA also carry I ® U.

Proof 
All that remains is to verify that U is invertible. Since U is a product of
elementary matrices, this follows by Theorem 2.

Example 4
Find the reduced row-echelon form R of and express it as
R = UA, where U is invertible.
Solution 
Use the usual row reduction A ® R but carry out I ®ÿU simultaneously in the
format [A  I ] ® [R  U ].

Hence, 

With Theorem 3 we can give an important characterization of invertible matrices
in terms of elementary matrices.

Theorem 4
A square matrix A is invertible if and only if it is a product of elementary matrices.

Proof
If A is a product of elementary matrices, it is invertible by Theorem 2
because a product of invertible matrices is again invertible.

Conversely, assume that A is invertible. By Theorem 5 §2.3, A can be
carried to the identity matrix I by elementary row operations. Hence,
Theorem 3 (with B = I ) implies that I = UA where U is an invertible matrix
that can be factored as a product U = EkEk-1

… E2E1 of elementary matrices.
But then

and each Ei
-1 is elementary by Theorem 2. 

A U E E E E E E E Ek k k k= = =−
−

− − −
−

− −1
1 1

1
1

1
2

1
1

1 1( )� �2

R U=
−





=
−

−






1 0 1
0 1 1

2 3
1 2

and .

2 3 1 1 0
1 2 1 0 1

1 2 1 0 1
2 3 1 1 0
1 2 1 0 1
0 1 1 1 2
1 0 1







→ 





→
− − −







→
− 22 3

0 1 1 1 2
−

−






A = 





2 3 1
1 2 1

[ ] [ ]A I UA U→

65
Section 2.4 Elementary Matrices

Chapter-2.qxd  12/4/01  11:33 AM  Page 65



Example 5
Express as a product of elementary matrices.

Solution 
We reduce A to I and write the elementary matrix at each stage.

Hence E3E2E1A = I and so A = (E3E2E1)
-1. This means that

by Theorem 2. This is the desired factorization.

Exercises 2.4

A E E E= = 



 −













− − −
1

1
2

1
3

1 0 1
1 0

1 0
2 1

1 0
0 3

−





=

↓

−






= = 





↓






2 3
1 0

1 0
2 3

0 1
1 0

1 0
0 3

1 1

A

E A Ewhere 

 = = 





↓






=

E E A E

E E E A E

2 1 2

3 2 1 3

1 0
2 1

1 0
0 1

( )

( )

where 

where == 





1 0
0 1

3

A =
−









2 3
1 0
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1. For each of the following elementary matrices,
describe the corresponding elementary row
operation and write the inverse.

2. In each case find an elementary matrix E such
that B = EA.

3. Let 

(a) Find elementary matrices E1 and E2 such
that C = E2E1A.

¨(b) Show that there is no elementary matrix E
such that C = E A.

¨4. If E is elementary, show that A and EA differ in
at most two rows.

5. (a) Is I an elementary matrix? Explain.
¨(b) Is 0 an elementary matrix? Explain.

A C=
−







=
−





1 2
1 1

1 1
2 1

and .

=
−







=
−





= 





=
−

(c)

(d)

 

 

A B

A B

1 1
1 2

1 2
1 1

4 1
3 2

1 1

,

,♦
33 2

1 1
1 1

1 1
1 1

2 1
1 3







=
−

−






=
−
−







=
−







(e) A B

A

,

♦(f )  =
−





, B
1 3
2 1

(a)

(b)

A B

A B

=
−







=
−







=
−





=
−



2 1
3 1

2 1
1 2

1 2
0 1

1 2
0 1

,

,♦



(a) (b)

(c)

E E

E

=
















=
















=

1 0 3
0 1 0
0 0 1

0 0 1
0 1 0
1 0 0

1 0 0
0

♦

11
2 0

0 0 1

1 0 0
2 1 0
0 0 1

0 1 0
1 0 0
0 0 1

















= −
















=


♦(d)

(e)

E

E















=
















♦(f ) E
1 0 0
0 1 0
0 0 5
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6. In each case find an invertible matrix U such
that UA = R is in reduced row-echelon form,
and express U as a product of elementary 
matrices.

7. In each case find an invertible matrix U such
that UA = B, and express U as a product of
elementary matrices.

8. In each case factor A as a product of elementary
matrices.

9. Let E be an elementary matrix.

(a) Show that ET is also elementary of the same
type.

(b) Show that ET
= E if E is of type I or II.

¨10. Show that every matrix A can be factored as
A = UR where U is invertible and R is in
reduced row-echelon form.

11. If , find an

elementary matrix F such that AF = B. 
[Hint: See Exercise 9.]

12. Let . Show that AAT
= I2 but

ATA ¹ I3.

13. If , verify that 

AB = I2 but BA ¹ I3.

14. Prove Theorem 1 for elementary matrices of : 
(a) type I; (b) type II.

15. While trying to invert A, [A  I ] is carried to 
[P Q] by row operations. Show that P = QA.

16. If A and B are n ´ n matrices and AB is 
a product of elementary matrices, show that the
same is true of A.

¨17. If U is invertible, show that the reduced row-
echelon form of a matrix [U A ] is [I U -1A ].

18. Two matrices A and B are called row-
equivalent (written A .~ B) if there is a sequence
of elementary row operations carrying A to B.
(a) Show that A .~ B if and only if A = UB for

some invertible matrix U.
¨(b) Show that: 

(i) A .~ A for all matrices A.
(ii) If A .~ B, then B .~ A.
(iii) If A .~ B and B .~ C, then A .~ C.

(c) Show that, if A and B are both row-
equivalent to some third matrix, 
then A .~ B.

(d) Show that 

are row-equivalent. [Hint: Consider part (c)
and Theorem 1 §1.2.]

19. If U and V are invertible n ´ n matrices, show
that U .~ V. (See Exercise 18.)

20. (See Exercise 18). Find all matrices that are
row-equivalent to:

21. Let A and B be m ´ n and n ´ m matrices,
respectively. If m > n, show that AB is not
invertible. [Hint: Use Theorem 1 §1.3 to find
X ¹ 0 with BX = 0.]

22. Define an elementary column operation on a matrix
to be one of the following: (I) Interchange 

(a) (b)

(c) (d)

0 0 0
0 0 0

0 0 0
0 0 1

1 0 0
0 1 0

1 2 0
0 0 1






















♦

 



1 1 3 2
0 1 4 1
1 0 8 6

1 1 4 5
2 1 11 8
1 2 2 2

−















−
− − −
−

















and

A B= 





= −
−

















1 3 2
1 2 2

0 3
1 1
1 0

and

A =
−





1
7

2 6 3
3 2 6

A B=
−







=
− −







1 2
1 3

5 2
5 3

and

(a) (b)

(c) (

 A A

A

= 





= 





=
















1 1
2 1

2 3
1 2

1 0 2
0 1 1
2 1 6

♦

♦ dd) A =
−

−

















1 0 3
0 1 4
2 2 15

(a)

(b)

A B

A B

=
−







=
− −





=
−





=

2 1 3
1 1 2

1 1 2
3 0 1

2 1 0
1 1 1

3

,

,♦
00 1

2 1 0−






(a)

(b)

(c)

A

A

A

=
−

−






=
−







=
−

−

1 1 2
2 1 0

1 2 1
5 12 1

1 2 1 0
3 1 1 2
1 3

♦  

 

33 2

2 1 1 0
3 1 2 1
1 2 3 1

















=
−

−
−

















♦(d)  A
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two columns. (II) Multiply a column by a
nonzero scalar. (III) Add a multiple of a column
to another column. Show that:
(a) If an elementary column operation is done

to an m ´ n matrix A, the result is AF, where
F is an n ´ n elementary matrix.

(b) Given any m ´ n matrix A, there exist m ´ m
elementary matrices E1, … , Ek and n ´ n
elementary matrices F1, … , Fp such that, 
in block form,

23. Suppose B is obtained from A by: 

(a) interchanging rows i and j; 
¨(b) multiplying row i by k ¹ 0; 

(c) adding k times row i to row j (i ¹ j ). 

In each case describe how to obtain B -1 from A-1.
[Hint: See part (a) of the preceding exercise.]

E E AF F
I

k p
r� �1 1

0
0 0

= 
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Section 2.5 LU-Factorization6

In this section the Gaussian algorithm is used to show that any matrix A can be
written as a product of matrices of a particularly nice type. This is used in computer
programs to solve systems of linear equations.

An m ´ n matrix A is called upper triangular if each entry of A below and to the
left of the main diagonal is zero. Here, as for square matrices, the elements 
a11, a22, … are called the main diagonal of A. Hence, the matrices

are all upper triangular. Note that each row-echelon matrix is upper triangular.
By analogy a matrix is called lower triangular if its transpose is upper

triangular—that is, each entry above and to the right of the main diagonal is zero.
A matrix is called triangular if it is either upper or lower triangular.

One reason for the importance of triangular matrices is the ease with which
systems of linear equations can be solved when the coefficient matrix is triangular.

Example 1
Solve the system

where the coefficient matrix is upper triangular.
Solution 
As for a row-echelon matrix, let x2 = s and x4 = t. Then solve for x5, x3, and x1 in
that order as follows:

Substitution into the second equation gives

Finally, substitution of both x5 and x3 into the first equation gives

x s t1
2
59 2= − − +

x t3
1
51= −

x5
6
2 3= =

x x x x x
x x x

x

1 2 3 4 5

3 4 5

5

2 3 5 3
5 8

2 6

+ − − + =
+ + =

=

1 1 0 3
0 2 1 1
0 0 3 0

0 2 1 0 5
0 0 0 3 1
0 0 1 0 1

1 1 1
0 1 1
0 0 0
0 0 0

−

−





























−


















6 This section is not used later, so it may be omitted with no loss of continuity.
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The method used in Example 1 is called back substitution for obvious reasons.
It works because the matrix is upper triangular, and it provides an efficient method
for finding the solutions (when they exist). In particular, it can be used in Gaussian
elimination because row-echelon matrices are upper triangular. Similarly, if the
matrix of a system of equations is lower triangular, the system can be solved 
(if a solution exists) by forward substitution. Here each equation is used to solve
for one variable by substituting values already found for earlier variables.

Suppose now that an arbitrary matrix A is given and consider the system

of linear equations with A as the coefficient matrix. If A can be factored as A = LU,
where L is lower triangular and U is upper triangular, the system can be solved in
two stages as follows:

1. Solve LY = B for Y by forward substitution.
2. Solve UX = Y for X by back substitution.

Then X is a solution to AX = B because AX = LUX = LY = B. Moreover, every 
solution arises in this way (take Y = UX ). This focuses attention on obtaining such
factorizations A = LU of a matrix A. 

The Gaussian algorithm provides a method of obtaining these factorizations. 
The method exploits the following facts about triangular matrices.

Lemma 1 
The product of two lower triangular matrices (or two upper triangular matrices) 
is again lower triangular (upper triangular). 

Lemma 2 
Let A be an n ´ n lower triangular (or upper triangular) matrix. Then A is
invertible if and only if no main diagonal entry is zero. In this case, A-1 is also
lower (upper) triangular.

The proofs are straightforward and are left as Exercises 8 and 9.
Now let A be any m ´ n matrix. The Gaussian algorithm produces a sequence of

row operations that carry A to a row-echelon matrix U. However, no multiple of 
a row is ever added to a row above it (because we are not insisting on reduced row-
echelon form). The point is that, apart from row interchanges,7 the only row
operations needed are those that make the corresponding elementary matrix lower
triangular. This observation gives the following theorem.

Theorem 1
Suppose that, via the Gaussian algorithm, a matrix A can be carried to a row-
echelon matrix U using no row interchanges. Then 

where L is lower triangular and invertible and U is row-echelon (and upper
triangular).

A LU=

AX B=
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7Any row interchange can actually be accomplished by row operations of other types (Exercise 6), but
one of these must involve adding a multiple of some row to a row above it.
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Proof
The hypotheses imply that there exist lower triangular, elementary matrices 
E1, E2, … , Ek such that U = (Ek

… E2E1)A. Hence A = LU, where 
L = E1

-1E2
-1 … Ek

-1 is lower triangular and invertible by Lemmas 1 and 2.

A factorization A =ÿLU as in Theorem 1 is called an LU-factorization of the
matrix A. Such a factorization may not exist (Exercise 4) because at least one row
interchange is required in the Gaussian algorithm. A procedure for dealing with this
situation will be outlined later. However, if an LU-factorization does exist, the row-
echelon matrix U in Theorem 1 is obtained by Gaussian elimination and the
algorithm also yields a simple procedure for writing down the matrix L. The
following example illustrates the technique.

Example 2

Find an LU-factorization of the matrix

Solution 
We are assuming that we can carry A to a row-echelon matrix U as before,
using no row interchanges. The steps in the Gaussian algorithm are shown,
and at each stage the corresponding elementary matrix is computed. The
reason for the circled entries will be apparent shortly.

Thus (as in the proof of Theorem 1), the LU-factorization of A is A = LU,
where

L E E E E E= = −
−















− − − − −
1

1
2

1
3

1
4

1
5

1
2 0 0
1 2 0
1 6 1

0 2 6 2 4
0 1 3 3 2
0 1 3 7 10

0 1 3 1 2
0 1 3 3 2
0 1 3 7 10

− −
−
−















=

− −
−
−















A

== =














− −

−















=

E A E

E E

1 1

1
2

2 1

0 0
0 1 0
0 0 1

0 1 3 1 2
0 0 0 2 4
0 1 3 7 10

AA E

E E E A E

2

3 2 1 3

1 0 0
1 1 0
0 0 1

0 1 3 1 2
0 0 0 2 4
0 0 0 6 12

=














− −













= ==














− −













= =

1 0 0
0 1 0
1 0 1

0 1 3 1 2
0 0 0 1 2
0 0 0 6 12

4 3 2 1 4E E E E A E
11 0 0
0 0
0 0 1

0 1 3 1 2
0 0 0 1 2
0 0 0 0 0

1
2

5 4 3 2 1















=
− −













=U E E E E E A EE5

1 0 0
0 1 0
0 6 1

=
−















A =
− −

−
−















0 2 6 2 4
0 1 3 3 2
0 1 3 7 10

.
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Now observe that the first two columns of L can be obtained from the
columns circled during execution of the algorithm.

The procedure in Example 2 works in general. Moreover, we can construct the
matrix L as we go along, one (circled) column at a time, starting from the left.
There is no need to compute the elementary matrices Ek, and the method is suitable
for use in a computer program because the circled columns can be stored in 
memory as they are created.

To describe the process in general, the following notation is useful. Given
positive integers m ³ r, let C1, C2, … , Cr be columns of decreasing lengths 
m, m - 1, … , m - r + 1. Then let

(*)

denote the m ´ m lower triangular matrix obtained from the identity matrix by
replacing the bottom m - j + 1 entries of column j by Cj for each j = 1, 2, … , r. 

Thus, the matrix L in Example 2 has this form:

Here is another example.

Example 3

If 

Note that if r < m, the last m - r columns of Lm[C1, … , Cr] are the corresponding
columns of the identity matrix Im.

Now the general version of the procedure in Example 2 can be stated. Given 
a nonzero matrix A, call the first nonzero column of A (from the left) the leading
column of A.

LU-Algorithm
Let A be an m ´ n matrix that can be carried to a row-echelon matrix U using no
row interchanges. An LU-factorization A = LU can be obtained as follows:
Step 1. If A = 0, take L = Im and U = 0.
Step 2. If A ¹ 0, let C1 be the leading column of A and do row operations (with no

row interchanges) to create the first leading 1 and bring A to the following
block form:

Step 3. If A 2 ¹ 0, let C 2 be the leading column of A 2 and apply step 2 to bring A 2

to block form:

A
X
A2

3

3

0 1
0 0

→ 





A
X
A

→ 





0 1
0 0

2

2

C C L C C1 2 4 1 2

3
1
0
2

5
1
7

=
−



















= −














= and  then  , [ , ]

33 0 0 0
1 5 0 0
0 1 1 0
2 7 0 1

−
−



















.

L L C C C C= = −
−















= −
−













3 1 2 1

2 0 0
1 2 0
1 6 1

2
1
1

[ , ] where and 22

2
6

= 




.

L C Cm r[ , , ]1 �
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Step 4. Continue in this way until all the rows below the last leading 1 created
consist of zeros. Take U to be the (row-echelon) matrix just created, and
take [see equation (*) on page 71]

where C1, C2, C3, … are the leading columns of the matrices A, A 2, A 3, … .

The proof is given at the end of this section.
Of course, the integer r in the LU-algorithm is the number of leading 1’s in the

row-echelon matrix U, so it is the rank of A.

Example 4

Find an LU-factorization for 

Solution 
The reduction to row-echelon form is 

If U denotes this row-echelon matrix, then A = LU, where 

The next example deals with a case where no row of zeros is present in U (in fact, 
A is invertible).

Example 5

Find an LU-factorization for A =
−















2 4 2
1 1 2
1 0 2

.

L =
−
− −



















5 0 0 0
3 8 0 0
2 4 2 0
1 8 0 1

5 5 10 0 5
3 3 2 2 1
2 2 0 1 0
1 1 10 2 5

1 1 2 0 1
0 0 8 2 4
0 0 4 1 2
0

−
−
− −

−



















→

−

−
00 8 2 4

1 1 2 0 1
0 0 1
0 0 0 2 0
0 0 0 0 0
1 1

1
4

1
2



















→

−

−



















→

− 22 0 1
0 0 1
0 0 0 1 0
0 0 0 0 0

1
4

1
2



















A =

−
−
− −

−



















5 5 10 0 5
3 3 2 2 1
2 2 0 1 0
1 1 10 2 5

.

L L C C Cm r= [ , , , ]1 2  �
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Solution
The reduction to row-echelon form is

There are matrices (for example ) that have no LU-factorization and so 

require at least one row interchange when being carried to row-echelon form via 
the Gaussian algorithm. However, it turns out that if all the row interchanges
encountered in the algorithm are carried out first, the resulting matrix requires no
interchanges and so has an LU-factorization. Here is the precise result.

Theorem 2 
Suppose an m ´ n matrix A is carried to a row-echelon matrix U via the Gaussian
algorithm. Let P1, P2, … , Ps be the elementary matrices corresponding (in order)
to the row interchanges used and write P = Ps

… P2P1. ( If no interchanges are used
take P = Im.) Then:

1. PA is the matrix obtained from A by doing these interchanges (in order) to A.
2. PA has an LU-factorization.

The proof is given at the end of this section.
A matrix P that is the product of elementary matrices corresponding to row inter-

changes is called a permutation matrix. Such a matrix is obtained from the identity
matrix by arranging the rows in a different order, so it has exactly one 1 in each row and
each column, and has zeros elsewhere. We regard the identity matrix as a permutation
matrix. The elementary permutation matrices are those obtained from I by a single row
interchange, and every permutation matrix is a product of elementary ones.

Example 6

If , find a permutation matrix P such that PA has an 

LU-factorization, and then find the factorization.
Solution
Apply the Gaussian algorithm to A:

A →

− −
−
−
−



















→

− −
−

− −
−

1 1 1 2
0 0 1 2
2 1 3 6
0 1 1 4

1 1 1 2
0 0 1 2
0 1 1 10
0 1 1 44

1 1 1 2
0 1 1 10
0 0 1 2
0 1 1 4

1 1 1 2
0
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− −
− −

−
−



















→

− −
11 1 10

0 0 1 2
0 0 2 14

1 1 1 2
0 1 1 10
0 0 1 2
0 0 0 10

−
−
−



















→

− −
−
−



















A =

−
− −

−
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0 0 1 2
1 1 1 2
2 1 3 6
0 1 1 4

0 1
1 0







so L = −
−















2 0 0
1 1 0
1 2 5

.

2 4 2
1 1 2
1 0 2

1 2 1
0 1 1
0 2 3

1 2 1
0 1 1
0 0 5

1

−















→ −














→ −














→
22 1

0 1 1
0 0 1

−














= U
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Two row interchanges were needed, first rows 1 and 2 and then rows 2 and 3.
Hence, as in Theorem 2,

If we do these interchanges (in order) to A, the result is PA. Now apply the
LU-algorithm to PA:

Hence, PA = LU, where .

Theorem 2 provides an important general factorization theorem for matrices. If
A is any m ´ n matrix, it asserts that there exists a permutation matrix P and an 
LU-factorization PA = LU. Moreover, it shows that either P = I or P = Ps … P2P1,
where P1, P2, … , Ps are the elementary permutation matrices arising in the reduction
of A to row-echelon form. Now observe that Pi

-1
= Pi for each i. 

Thus, P -1
= P1P2

… Ps, so the matrix A can be factored as

where P -1 is a permutation matrix, L is lower triangular and invertible, and U is
a row-echelon matrix. This is called a PLU-factorization of A.

The LU-factorization in Theorem 1 is not unique. For example,

However, the fact that the row-echelon matrix here has a row of zeros is necessary.
Recall that the rank of a matrix A is the number of nonzero rows in any row-
echelon matrix U to which A can be carried by row operations. Thus, if A is m ´ n,
the matrix U has no row of zeros if and only if A has rank m.

Theorem 3 
Let A be an m ´ n matrix that has an LU-factorization

A = LU
If A has rank m (that is, U has no row of zeros), then L and U are uniquely
determined by A.

1 0
3 2

1 2 3
0 0 0
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1 2 3
0 0 0
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=
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= U
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1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

==



















0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1
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Proof
Suppose A = MV is another LU-factorization of A, so M is lower triangular
and invertible and V is row-echelon. Hence LU = MV, and we must show
that L = M and U = V. We write N = M -1L. Then N is lower triangular and
invertible (Lemmas 1 and 2) and NU = V, so it suffices to prove that N = I. 
If N is m ´ m, we use induction on m. The case m = 1 is left to the reader. 
If m > 1, observe first that column 1 of V is N times column 1 of U. Thus if
either column is zero, so is the other (N is invertible). Hence, we can
assume (by deleting zero columns) that the (1, 1)-entry is 1 in both U and V. 

Now we write in block form.

Then NU = V becomes . Hence a = 1, 

Y = Z, X = 0, and N1U1 = V1. But N1U1 = V1 implies N1 = I by induction, 
whence N = I.

If A is an m ´ m invertible matrix, then A has rank m by Theorem 5 §2.3. Hence,
we get the following important special case of Theorem 3.

Corollary
If an invertible matrix A has an LU-factorization A = LU, then L and U are
uniquely determined by A.

Of course, in this case U is an upper triangular matrix with 1s along the main diagonal.

Proofs of Theorems
Proof of the LU-algorithm 
Proceed by induction on n. If n = 1, it is left to the reader. If n > 1, let C1

denote the leading column of A and let K1 denote the first column of the 
m ´ m identity matrix. There exist elementary matrices E1, … , Ek such that,
in block form, 

Moreover, each Ej can be taken to be lower triangular (by assumption). Write

Then L0 is lower triangular, and L0K1 = C1. Also, each Ej (and so each Ej
-1) 

is the result of either multiplying row 1 of Im by a constant or adding 
a multiple of row 1 to another row. Hence, 

in block form. Now, by induction, let A1 = L1U1 be an LU-factorization of A1,
where L1 = Lm -1[C2, … , Cr] and U1 is row-echelon. Then block
multiplication gives

L A K
X

LU L

X

U0
1

1
1

1 1 1

1

1

0
1 0

0

0 1

0 0
− = 





= 











L E E E I C
Ik m

m
0 1

1
2

1 1
1

1

0
= = 





− − −

−

( )�

L E E E E E Ek k0 2 1
1

1
1

2
1 1= =− − − −( )� �

( ) ( ) .E E E A K
X
A E E E C Kk k� �2 1 1

1

1
2 1 1 10= 





=where 

a aY
X XY N U

Z
V+







= 



1 1 1

1
0

N
a
X N

U
Y
U

V
Z
V

= 





= 





= 





0 1
0

1
01 1 1

, , and 
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Hence A = LU, where is row-echelon and

This completes the proof.

Proof of Theorem 2
Let A be a nonzero m ´ n matrix and let Kj denote column j of Im . There is 
a permutation matrix P1 (where either P1 is elementary or P1 = Im ) such that the
first nonzero column C1 of P1A has a nonzero entry on top. Hence, as in the
LU-algorithm,

in block form. Then let P2 be a permutation matrix (either elementary or Im)
such that

and the first nonzero column C2 of A¢1 has a nonzero entry on top. Thus,

in block form. Continue to obtain elementary permutation matrices 
P1, P2, … , Pr and columns C1, C2, … , Cr of lengths m, m - 1, … , such that

where U is a row-echelon matrix and Lj = Lm[K1, … , Kj -1, Cj ]
-1 for each j,

where the notation means the first j -1 columns are those of Im. It is not
hard to verify that each Lj has the form Lj = Lm[K1, … , Kj-1, C ¢j ] where C ¢j is 
a column of length m - j + 1. We now claim that each permutation matrix Pk

can be “moved past” each matrix Lj to the right of it, in the sense that

where L¢j = Lm[K1, … , Kj -1, C²j ] for some column C²j of length m -ÿj + 1.
Given that this is true, we obtain a factorization of the form

If we write P = PrPr -1
… P2P1, this shows that PA has an LU-factorization 

because LrL¢r -1
… L¢2 L¢1 is lower triangular and invertible. All that remains is 

to prove the following rather technical result.

Lemma 3
Let Pk result from interchanging row k of Im with a row below it. If j < k, let Cj be 
a column of length m - j + 1. Then there is another column C ¢j of length m - j + 1
such that

The proof is left as Exercise 12.

P L K K C L K K C Pk m j j m j j k⋅ = ′ ⋅− −[ ] [ ]1 1 1 1� �

( )( )L L L L P P P P A Ur r r r′ ′ ′ =− −1 2 1 1 2 1� �

P L L Pk j j k= ′

( )L P L P L P L P A Ur r r r− − =1 1 2 2 1 1�

L K C P L C P A

X
X

A
m m[ , ] [ ]1 2

1
2 1

1
1

1

2

2

0 1

0 0
0 1

0 0
 − −⋅ ⋅ ⋅ ⋅ =

















P L C P A
X

Am2 1
1

1
1

1

0 1

0 0
⋅ ⋅ ⋅ = ′











−[ ]

L C P A
X
Am[ ]1

1
1

1

1

0 1
0 0

− ⋅ ⋅ =










L C
I L

C
L

L C C C
m

m r= 











= 





=
−

1
1

1 1 2

0 1 0

0

0

1 1

  [ , , , ]�

U
X
U

= 





0 1
0 0

1

1
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Exercises 2.5

77
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1. Find an LU-factorization of the following
matrices.

2. Find a permutation matrix P and an LU-
factorization of PA if A is:

3. In each case use the given LU-decomposition of
A to solve the system AX = B by finding Y such
that LY = B, and then X such that UX = Y:

4. Show that is impossible where L is

lower triangular and U is upper triangular.

5. Let E and F be the elementary matrices
obtained from the identity matrix by adding
multiples of row k to rows p and q. If k ¹ÿp and 
k ¹ÿq, show that EF = FE.

¨6. Show that we can accomplish any row inter-
change by using only row operations of other
types.

7. (a) Let L and L1 be invertible lower triangular
matrices, and let U and U1 be invertible
upper triangular matrices. Show that
LU = L1U1 if and only if there exists an
invertible diagonal matrix D such that
L1 = LD and U1 = D-1U. [Hint: Scrutinize 
L-1L1 = UU1

-1.]
¨(b) Use part (a) to prove Theorem 3 in the case

that A is invertible.
¨8. Prove Lemma 1. [Hint: Use block multiplication

and induction.]

9. Prove Lemma 2. [Hint: Use block multiplication
and induction.]

10. A triangular matrix is called unit triangular if it
is square and every main diagonal element is a 1.
(a) If A can be carried by the Gaussian algorithm

to row-echelon form using no row inter-
changes, show that A = LU where L is unit
lower triangular and U is upper triangular.

(b) Show that the factorization in (a) is unique.

11. Let C1, C2, … , Cr be columns of lengths 
m, m -ÿ1, … , m -ÿr + 1. If Kj denotes column j
of Im, show that 
Lm[C1, C2, … , Cr] =ÿLm[C1]Lm[K1, C2]Lm[K1, K2, C3]
… Lm[K1, K2, … , Kr-1, Cr]. The notation is as in
the proof of Theorem 2. [Hint: Use induction
on m and block multiplication.]

12. Prove Lemma 3. [Hint: Pk
-1
= Pk. Write 

in block form where P0 is an 

(m - k) ´ÿ(m - k) permutation matrix.]

P
I

Pk
k=











0
0 0

0 1
1 0









 = LU

♦ =
−

−
−





















−
− −

(d)  A

2 0 0 0
1 1 0 0
1 1 2 0
3 0 1 1

1 1 0 1
0 1 2 1
0 0 1 1
0 0 00 0

4
6
4
5





















=
−





















;  B

(a)   A B= −
































= −
2 0 0

0 1 0
1 1 3

1 0 0 1
0 0 1 2
0 0 0 1

1
1
2

;















=
−

















−











♦(b)  A
2 0 0
1 3 0
1 2 1

1 1 0 1
0 1 0 1
0 0 0 0





=
−
−

















=

−
−

−















;  

  

B

A

2
1
1

2 0 0 0
1 1 0 0
1 0 2 0
0 1 0 2

(c)






− −
−
−





















=
−











1 1 2 1
0 1 1 4
0 0 1
0 0 0 1

1
1
2
0

1
2

;  B









(a) (b)

(c)

0 0 2
0 1 4
3 5 1

0 1 2
0 0 4
1 2 1

0 1 2 1 3

−
















−

−

















−
−

♦

11 1 3 1 4
1 1 3 6 2
2 2 4 1 0

1 2 3 0
2 4 6 5
1 1 1 3
2 5 1

− −
− −





















− −
−
−

−

♦(d)

00 1





















(a) (b)2 6 2 0 2
3 9 3 3 1
1 3 1 3 1

2 4 2
1 1 3
1 7 7

−
−

− − −

















−
− −
















♦


−
−
− −

− −





















− − −♦

(c)

(d)

2 6 2 0 2
1 5 1 2 5
3 7 3 2 5
1 1 1 2 3
1 3 1 0 1
1 44 1 1 1
1 2 3 1 1
0 2 4 2 0
2 2 4 6 0 2
1 1 2 1 3 1
2 2 4 1 1

− −
− − −





















−
− − −

(e)

66
0 2 0 3 4 8
2 4 4 1 2 6

2 2 2 4 2
1 1 0 2 1
3 1 2 6 3
1 3

− − −























−
−

−
−

♦(f )

22 2 1





















Chapter-2.qxd  12/4/01  11:33 AM  Page 77



78
Chapter 2 Matrix Algebra

8 The applications in this section and the next are independent and may be taken in any order.
9See W. W. Leontief, “The world economy of the year 2000,” Scientific American, Sept. 1980.

Section 2.6 An Application to Input-Output Economic Models8

In 1973 Wassily Leontief was awarded the Nobel prize in economics for his work on
mathematical models.9 Roughly speaking, an economic system in this model consists
of several industries, each of which produces a product and each of which uses some
of the production of the other industries. The following example is typical.

Example 1
A primitive society has three basic needs: food, shelter, and clothing. There
are thus three industries in the society—the farming, housing, and garment
industries—that produce these commodities. Each of these industries con-
sumes a certain proportion of the total output of each commodity according
to the following table.

Find the annual prices that each industry must charge for its income to equal
its expenditures.
Solution
Let p1, p2, and p3 be the prices charged per year by the farming, housing, and
garment industries, respectively, for their total output. To see how these prices 
are determined, consider the farming industry. It receives p1 for its production in
any year. But it consumes products from all these industries in the following
amounts (from row 1 of the table): 40% of the food, 20% of the housing, and
30% of the clothing. Hence, the expenditures of the farming industry are 
0.4p1 +ÿ0.2p2 +ÿ0.3p3, so

A similar analysis of the other two industries leads to the following system of
equations.

This has the matrix form EP = P, where

The equations can be written as the homogeneous system

where I is the 3 × 3 identity matrix, and the solutions are

P
t
t
t

=














2
3
2

( )I E P− = 0

E P
p
p
p

=














=














0 4 0 2 0 3
0 2 0 6 0 4
0 4 0 2 0 3

1

2

3

. . .

. . .

. . .
and

0 4 0 2 0 3
0 2 0 6 0 4
0 4 0 2 0 3

1 2 3 1

1 2 3 2

1 2 3

. . .

. . .

. . .

p p p p
p p p p
p p p

+ + =
+ + =
+ + = pp3

0 4 0 2 0 31 2 3 1. . .p p p p+ + =

OUTPUT
Farming Housing Garment

Farming 0.4 0.2 0.3
CONSUMPTION Housing 0.2 0.6 0.4

Garment 0.4 0.2 0.3
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where t is a parameter. Thus, the pricing must be such that the total output of
the farming industry has the same value as the total output of the garment
industry, whereas the total value of the housing industry must be as much.

In general, suppose an economy has n industries, each of which uses some
(possibly none) of the production of every industry. We assume first that the
economy is closed (that is, no product is exported or imported) and that all
product is used. Given two industries i and j, let ei j denote the proportion of the
total annual output of industry j that is consumed by industry i. Then E = [ei j] is
called the input-output matrix for the economy. Clearly,

(1)

Moreover, all the output from industry j is used by some industry (the model is
closed), so

(2)

Condition 2 asserts that each column of E sums to 1. Matrices satisfying conditions
1 and 2 are called stochastic matrices.

As in Example 1, let pi denote the price of the total annual production  of
industry i. Then pi is the annual revenue of industry i. On the other hand, industry
i spends ei1 p1 + ei2 p2 +

…+ÿein pn annually for the product it uses (ei j pj is the cost 
for product from industry j ). The closed economic system is said to be in
equilibrium if the annual expenditure equals the annual revenue for each
indusry—that is, if

If we write , these equations can be written as the matrix equation

This is called the equilibrium condition, and the solutions P are called
equilibrium price structures. The equilibrium condition can be written as

which is a system of homogeneous equations for P. Moreover, there is always a non-
trivial solution P. Indeed, the column sums of I - E are all 0 (because E is stochastic),
so the row-echelon form of I - E has a row of zeros. In fact, more is true:

Theorem 1 
Let E be any n ´ n stochastic matrix. Then there is a nonzero n ´ 1 matrix P
with nonnegative entries such that EP = P. If all the entries of E are positive, the
matrix P can be chosen with all entries positive.

Theorem 1 guarantees the existence of an equilibrium price structure for any
closed input-output system of the type discussed here. The proof is beyond the
scope of this book.10

( )I E P− = 0

EP P=

P

p
p

pn

=



















1

2

�

e p e p e p p i ni i in n i1 1 2 2 1 2+ + + = =� �for each  , , ,

e e e jj j n j1 2 1+ + + =� for each  

0 1≤ ≤e i ji j for all  and

3
2
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10 The interested reader is referred to P. Lancaster’s Theory of Matrices (New York: Academic Press,
1969) or to E. Seneta’s Non-negative Matrices (New York: Wiley, 1973).
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Example 2
Find the equilibrium price structures for four industries if the input-output
matrix is 

Find the prices if the total value of business is $1000.
Solution

If is the equilibrium price structure, then the equilibrium condition  

is EP = P. When we write this as (I - E )P = 0, the methods of Chapter 1 yield
the following family of solutions:

where t is a parameter. If we insist that p1 + p2 + p3 + p4 = 1000, then t = 5.525
(to four figures). Hence

to five figures.

The Open Model
We now assume that there is a demand for products in the open sector of the
economy, which is the part of the economy other than the producing industries (for
example, consumers). Let di denote the total value of the demand for product i in
the open sector. If pi and ei j are as before, the value of the annual demand for
product i by the producing industries themselves is ei1p1 + ei2p2 +

…+ ein pn, so the
total annual revenue pi of industry i breaks down as follows:

The column is called the demand matrix, and this gives a matrix equation

or
(*)

This is a system of linear equations for P, and we ask for a solution P with every
entry nonnegative. Note that every entry of E is between 0 and 1, but the column
sums of E need not equal 1 as in the closed model.

( )I E P D− =

P EP D= +

D
d

dn

=














1

�

p e p e p e p d i ni i i in n i= + + + + =( ) , , ,1 1 2 2 1 2� �for each  

P =



















243 09
215 47
281 77
259 67

.

.

.

.

P

t
t
t
t

=



















44
39
51
47

P

p
p
p
p

=



















1

2

3

4

E =



















. . . .
. . .
. . . .

. . .

6 2 1 1
3 4 2 0
1 3 5 2
0 1 2 7
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Before proceeding, it is convenient to introduce a useful notation. If A = [aij] 
and B = [bi j] are matrices of the same size, we write A > B if aij > bij for all i and j,
and we write A ³ B if aij ³ bi j for all i and j. Thus P ³ 0 means that every entry of 
P is nonnegative. Note that A ³ 0 and B ³ 0 implies that AB ³ 0.

Now, given a demand matrix D ³ 0, we look for a production matrix P ³ 0 satisfy-
ing equation (*). This certainly exists if I - E is invertible and (I - E )-1

³ 0. On the
other hand, the fact that D ³ 0 means any solution P to equation (*) satisfies P ³ EP.
Hence, the following theorem is not too surprising.

Theorem 2 
Let E ³ 0 be a square matrix. Then I - E is invertible and (I - E )-1 

³ 0 if and only
if there exists a column P > 0 such that P > EP.

Heuristic Proof 
If (I - E )-1

³ 0, the existence of P > 0 with P > EP is left as Exercise 11.
Conversely, suppose such a column P exists. Observe that

holds for all k ³ 2. If we can show that every entry of Ek approaches 0 as 
k becomes large then, intuitively, the infinite matrix sum

exists and (I - E )U = I. Since U ³ 0, this does it. To show that Ek approaches 0,
it suffices to show that EP < mP for some number m with 0 < m <ÿ1 (then 
EkP < m

kP for all k ³ 1 by induction). The existence of m is left as Exercise 12.

The condition P > EP in Theorem 2 has a simple economic interpretation. If P is
a production matrix, entry i of EP is the total value of all product used by industry i
in a year. Hence, the condition P > EP means that, for each i, the value of product
produced by industry i exceeds the value of the product it uses. In other words, each
industry runs at a profit.

Example 3

If , show that I - E is invertible and (I - E )-1
³ 0.

Solution
Use P = [3 2 2]T in Theorem 2.

If P0 = [1 1 … 1]T, the entries of EP0 are the row sums of E. Hence P0 > EP0 holds
if the row sums of E are all less than 1. This proves the first of the following useful
facts (the second is Exercise 10).

Corollary 
Let E ³ 0 be a square matrix. In each of the following cases, I - E is invertible and 
(I - E )-1

³ 0:
1. All row sums of E are less than 1.
2. All column sums of E are less than 1.

E =














0 6 0 2 0 3
0 1 0 4 0 2
0 2 0 5 0 1

. . .

. . .

. . .

U I E E= + + +2 �

( )( )I E I E E E I Ek k− + + + + = −−2 1�
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1. Find the possible equilibrium price structures
when the input-output matrices are:

¨2. Three industries A, B, and C are such that all
the output of A is used by B, all the output of
B is used by C, and all the output of C is used
by A. Find the possible equilibrium price
structures.

3. Find the possible equilibrium price structures
for three industries where the input-output 

matrix is . Discuss why there are two

parameters here.
¨4. Prove Theorem 1 for a 2 ´ 2 stochastic matrix E

by first writing it in the form , 
where 0 £ a £ 1 and 0 £ b £ 1.

5. If E is an n ´ n stochastic matrix and C is an 
n ´ 1 matrix, show that the sum of the entries 
of C equals the sum of the entries of the n ´ 1
matrix EC.

6. Let W = [1 1 1 … 1]. Let E and F denote n ´ n
matrices with nonnegative entries.

(a) Show that E is a stochastic matrix if and only
if WE = W.

(b) Use part (a) to deduce that, if E and F are
both stochastic matrices, then EF is also 
stochastic.

7. Find a 2 ´ 2 matrix E with entries between 0
and 1 such that:
(a) I - E has no inverse.

¨(b) I - E has an inverse but not all entries of 
(I - E )-1 are nonnegative.

¨8. If E is a 2 ´ 2 matrix with entries between 0 and
1, show that I - E is invertible and (I - E )-1

³ 0 if

and only if tr E < 1 + det E. Here, if 

then tr E = a + d and det E = ad - bc.

9. In each case show that I - E is invertible and 
(I - E )-1

³ 0.

10. Prove that (1) implies (2) in the Corollary to
Theorem 2.

11. If (I - E )-1
³ 0, find P > 0 such that P > EP.

12. If EP < P where E ³ 0 and P > 0, find a number
m such that EP < mP and 0 < m <ÿ1. [Hint: If
EP = [q1, … , qn ]T and P = [ p1, … , pn]

T, take any 
number m such that max{ , , } .]

q
p

q
p
n

n

1

1
1� < <�

(a) (b). . .
. . .
. . .

. . .

. . .

. . .

6 5 1
1 3 3
2 1 4

7 1 3
2 5 2
1 1 4

























♦ 























(c) (d). . .
. . .
. . .

. . .

. . .

. . .

6 2 1
3 4 2
2 5 1

8 1 1
3 1 2
3 3 2

















E
a b
c d

= 




,

E
a b

a b
=

− −




1 1

1 0 0
0 0 1
0 1 0

















(a) (b). . .
. . .
. . .

. .

. . .

. .

1 2 3
6 2 3
3 6 4

5 0 5
1 9 2
4 1

















♦

        
..

. . . .

. . .

. . . .

. . . .

3
3 1 1 2
2 3 1 0
3 3 2 3
2 3 6 5


































(c)





















♦

  

(d) . . .
. . .
. . . .
. . . .

5 0 1 1
2 7 0 1
1 2 8 2
2 1 1 6

Section 2.7 An Application to Markov Chains
Many natural phenomena progress through various stages and can be in a variety of
states at each stage. For example, the weather in a given city progresses day by day
and, on any given day, may be sunny or rainy. Here the states are “sun’’ and “rain,’’
and the weather progresses from one state to another in daily stages. Another
example might be a football team: The stages of its evolution are the games it plays,
and the possible states are “win,’’ “draw,’’ and “loss.’’

The general setup is as follows: A “system’’ evolves through a series of “stages,’’
and at any stage it can be in any one of a finite number of “states.’’ At any given stage,
the state to which it will go at the next stage depends on the past and present history
of the system—that is, on the sequence of states it has occupied to date. A Markov
chain is such an evolving system wherein the state to which it will go next depends
only on its present state and does not depend on the earlier history of the system.11

11 The name honors Andrei Andreyevich Markov (1856–1922) who was a professor at the university in
St. Petersburg, Russia.
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Even in the case of a Markov chain, the state the system will occupy at any stage
is determined only in terms of probabilities. In other words, chance plays a role. For
example, if a football team wins a particular game, we do not know whether it will
win, draw, or lose the next game. On the other hand, we may know that the team
tends to persist in winning streaks; for example, if it wins one game it may win the 
next game of the time, lose of the time, and draw of the time. These frac-
tions are called the probabilities of these various possibilities. Similarly, if the team 
loses, it may lose the next game with probability (that is, half the time), win 
with probability , and draw with probability . The probabilities of the various 
outcomes after a drawn game will also be known.

We shall treat probabilities informally here: The probability that a given event will
occur is the long-run proportion of the time that the event does indeed occur. Hence, all
probabilities are numbers between 0 and 1. A probability of 0 means the event is
impossible and never occurs; events with probability 1 are certain to occur.

If a Markov chain is in a particular state, the probabilities that it goes to the
various states at the next stage of its evolution are called the transition
probabilities for the chain, and they are assumed to be known quantities. To
motivate the general conditions that follow, consider the following simple example.
Here the system is a man, the stages are his successive lunches, and the states are the
two restaurants he chooses.

Example 1
A man always eats lunch at one of two restaurants, A and B. He never eats at
A twice in a row. However, if he eats at B, he is three times as likely to eat at B
next time as at A. Initially, he is equally likely to eat at either restaurant.

(a) What is the probability that he eats at A on the third day after the initial one?
(b) What proportion of his lunches does he eat at A?

Solution 
The table of transition probabilities follows. The A column indicates that if he
eats at A on one day, he never eats there again on the next day and so is certain
to go to B.

The B column shows that, if he eats at B on one day, he will eat there on the
next day of the time and switches to A only of the time.

The restaurant he visits on a given day is not determined. The most that we
can expect is to know the probability that he will visit A or B on that day. Let 

denote the state vector for day m. Here s1
(m) denotes the probability 

that he eats at A on day m, and s2
(m) is the probability that he eats at B on day m.

It is convenient to let S0 correspond to the initial day. Because he is equally 

likely to eat at A or B on that initial day, s1
(0)
= 0.5 and s2

(0)
= 0.5, so . S0

0 5
0 5

= 





.

.

S
s

s
m

m

m=










1

2

( )

( )

1
4

3
4

1
4

1
4

1
2

1
10

4
10

1
2

PRESENT LUNCH

A               B

NEXT LUNCH
A 0 0.25
B 1 0.75
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Now let 

denote the transition matrix. We claim that the relationship

holds for all integers m ³ 0. This will be derived later; for now, we use it as
follows to successively compute S1, S2, S3, … .

Hence, the probability that his third lunch (after the initial one) is at A is
approximately 0.195, whereas the probability that it is at B is 0.805.

If we carry these calculations on, the next state vectors are (to five figures)

Moreover, the higher values of Sm get closer and closer to . Hence, in the

long run, he eats 20% of his lunches at A and 80% at B.

Example 1 incorporates most of the essential features of all Markov chains. The
general model is as follows: The system evolves through various stages and at each
stage can be in exactly one of n distinct states. It progresses through a sequence of
states as time goes on. If a Markov chain is in state j at a particular stage of its
development, the probability pi j that it goes to state i at the next stage is called the
transition probability. The n ´ n matrix P = [ pi j] is called the transition matrix
for the Markov chain. The situation is depicted graphically in Figure 2.1.

We make one important assumption about the transition matrix P = [ pi j]: It
does not depend on which stage the process is in. This assumption means that the
transition probabilities are independent of time—that is, they do not change as time
goes on. It is this assumption that distinguishes Markov chains in the literature of
this subject.

Example 2
Suppose the transition matrix of a three-state Markov chain is

                                   Present state                         
                                 1 3 2
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p p
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If, for example, the system is in state 2, column 2 lists the probabilities of
where it goes next. Thus, the probability is p12 = 0.1 that it goes from state 2 to
state 1, and the probability is p22 = 0.9 that it goes from state 2 to state 2. The
fact that p32 = 0 means that it is impossible for it to go from state 2 to state 3 at
the next stage.

Consider the jth column of the transition matrix P.

If the system is in state j at some stage of its evolution, the transition probabilities
p1j, p2j , … , pnj represent the fraction of the time that the system will move to 
state 1, state 2, … , state n, respectively, at the next stage. We assume that it 
has to go to some state at each transition, so the sum of these probabilities 
equals 1:

Thus, the columns of P all sum to 1 and the entries of P lie between 0 and 1. 
A matrix with these properties is called a stochastic matrix.

As in Example 1, we introduce the following notation: Let si
(m) denote the

probability that the system is in state i after m transitions. Then n ´ 1 
matrices

are called the state vectors for the Markov chain. Note that the sum of the entries
of Sm must equal 1 because the system must be in some state after m transitions. The
matrix S0 is called the initial state vector for the Markov chain and is given as part
of the data of the particular chain. For example, if the chain has only two states,

then an initial vector means that it started in state 1. If it started in state 2, 

the initial vector would be . If , it is equally likely that the system

started in state 1 or in state 2.

Theorem 1
Let P be the transition matrix for an n-state Markov chain. If Sm is the state
vector at stage m, then

for each m = 0, 1, 2, … .

S PSm m+ =1
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Heuristic Proof 
Suppose that the Markov chain has been run N times, each time starting
with the same initial state vector. Recall that pi j is the proportion of the time
the system goes from state j at some stage to state i at the next stage,
whereas si

(m) is the proportion of the time it is in state i at stage m. Hence

is (approximately) the number of times the system is in state i at stage m + 1. 
We are going to calculate this number another way. The system got to state i
at stage m + 1 through some other state (say state j ) at stage m. The number
of times it was in state j at that stage is (approximately) sj

(m)N, so the number
of times it got to state i via state j is pi j(sj

(m)N ). Summing over j gives the
number of times the system is in state i (at stage m + 1). This is the number
we calculated before, so

Dividing by N gives for each i, and this
can be expressed as the matrix equation Sm +1 = PSm .

If the initial probability vector S0 and the transition matrix P are given, Theorem 1
gives S1, S2, S3, … , one after the other, as follows:

Hence, the state vector Sm is completely determined for each m = 0, 1, 2, … by 
P and S0.

Example 3
A wolf pack always hunts in one of three regions R1, R2, and R3. Its hunting
habits are as follows:

1. If it hunts in some region one day, it is as likely as not to hunt there again
the next day.

2. If it hunts in R1, it never hunts in R2 the next day.
3. If it hunts in R2 or R3, it is equally likely to hunt in each of the other 

regions the next day.

If the pack hunts in R1 on Monday, find the probability that it hunts there on
Thursday.
Solution
The stages of this process are the successive days; the states are the three
regions. The transition matrix P is determined as follows (see the table): The
first habit asserts that p11 = p22 = p33 = . Now column 1 displays what happens
when the pack starts in R1: It never goes to state 2, so p21 = 0 and, because the
column must sum to 1, p31 = . Column 2 describes what happens if it starts in 
R2: p22 = and p12 and p32 are equal (by habit 3), so p12 = p32 = because the 
column sum must equal 1. Column 3 is filled in a similar way.

1
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Now let Monday be the initial stage. Then because the pack hunts

in R1 on that day. Then S1, S2, and S3 describe Tuesday, Wednesday, and
Thursday, respectively, and we compute them using Theorem 1.

Hence, the probability that the pack hunts in Region R1 on Thursday is .

Another phenomenon that was observed in Example 1 can be expressed in general
terms. The state vectors S0, S1, S2, … were calculated in that example and were

found to “approach” . This means that the first component of Sm becomes

and remains very close to 0.2 as m becomes large, whereas the second component
approaches 0.8 as m increases. When this is the case, we say that Sm converges to S.
For large m, then, there is very little error in taking Sm =ÿS, so the long-term
probability that the system is in state 1 is 0.2, whereas the probability that it is in 
state 2 is 0.8. In Example 1, enough state vectors were computed for the limiting 
vector S to be apparent. However, there is a better way to do this that works in 
most cases.

Suppose P is the transition matrix of a Markov chain, and assume that the state
vectors Sm converge to a limiting vector S. Then Sm is very close to S for sufficiently
large m, so Sm+1 is also very close to S. Thus, the equation Sm +1 = PSm from
Theorem 1 is closely approximated by

so it is not surprising that S should be a solution to this matrix equation. Moreover,
it is easily solved because it can be written as a system of linear equations

with the entries of S as variables. 

In Example 1, where , the general solution to (I -ÿP)S =ÿ0 is 

where t is a parameter. But if we insist that the entries of S sum to 1 (as must be true

of all state vectors), we find t =ÿ0.2 and so as before.

All this is predicated on the existence of a limiting vector for the sequence of
state vectors of the Markov chain, and such a vector may not always exist. However,
it does exist in one commonly occurring situation. A stochastic matrix P is called 

regular if some power Pm of P has every entry positive. The matrix of

Example 1 is regular (in this case, each entry of P 2 is positive), and the general 
theorem is as follows:
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Theorem 2
Let P be the transition matrix of a Markov chain and assume that P is regular.
Then there is a unique column matrix S satisfying the following conditions:

1. PS = S.
2. The entries of S are positive and sum to 1.

Moreover, condition 1 can be written as

and so gives a homogeneous system of linear equations for S. Finally, the sequence
of state vectors S0, S1, S2, … converges to S in the sense that if m is large enough,
each entry of Sm is closely approximated by the corresponding entry of S.

This theorem will not be proved here.12

If P is the regular transition matrix of a Markov chain, the column S satisfying
conditions 1 and 2 of Theorem 2 is called the steady-state vector for the Markov
chain. The entries of S are the long-term probabilities that the chain will be in each
of the various states.

Example 4
A man eats one of three soups—beef, chicken, and vegetable—each day. 
He never eats the same soup two days in a row. If he eats beef soup on a
certain day, he is equally likely to eat each of the others the next day; if he
does not eat beef soup, he is twice as likely to eat it the next day as the
alternative.

(a) If he has beef soup one day, what is the probability that he has it again 
two days later?

(b) What are the long-run probabilities that he eats each of the three soups?

Solution 
The states here are B, C, and V, the three soups. The transition matrix P is
given in the table. (Recall that, for each state, the corresponding column lists
the probabilities for the next state.) If he has beef soup initially, then the initial
state vector is

Then two days later the state vector is S2. If P is the transition matrix, then

so he eats beef soup two days later with probability . This answers (a) and
also shows that he eats chicken and vegetable soup each with probability .1
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12 The interested reader can find an elementary proof in J. Kemeny, H. Mirkil, J. Snell, and 
G. Thompson, Finite Mathematical Structures (Englewood Cliffs, N.J.: Prentice-Hall, 1958).
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To find the long-run probabilities, we must find the steady-state vector S.
Theorem 2 applies because P is regular (P 2 has positive entries), so S satisfies
PS =ÿS. That is, (I - P)S =ÿ0 where

The solution is where t is a parameter, and we use 

because the entries of S must sum to 1. Hence, in the long run, he eats beef 
soup 40% of the time and eats chicken soup and vegetable soup each 30% of 
the time.

Exercises 2.7
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1. Which of the following stochastic matrices is
regular?

2. In each case find the steady-state vector and,
assuming that it starts in state 1, find the proba-
bility that it is in state 2 after 3 transitions.

3. A fox hunts in three territories A, B, and C. He
never hunts in the same territory on two succes-
sive days. If he hunts in A, then he hunts in C
the next day. If he hunts in B or C, he is twice as
likely to hunt in A the next day as in the other
territory.
(a) What proportion of his time does he spend

in A, in B, and in C?
(b) If he hunts in A on Monday (C on Monday),

what is the probability that he will hunt in B
on Thursday?

4. Assume that there are three classes—upper,
middle, and lower—and that social mobility
behaves as follows:

1. Of the children of upper-class parents, 70%
remain upper-class, whereas 10% become
middle-class and 20% become lower-class.
2. Of the children of middle-class parents, 80%
remain middle-class, whereas the others are
evenly split between the upper class and the
lower class.
3. For the children of lower-class parents, 60%
remain lower-class, whereas 30% become
middle-class and 10% upper-class.
(a) Find the probability that the grandchild of

lower-class parents becomes upper-class.
¨(b) Find the long-term breakdown of society

into classes.
5. The Prime Minister says she will call an

election. This gossip is passed from person to
person with a probability p ¹ÿ0 that the
information is passed incorrectly at any stage.
Assume that when a person hears the gossip he
or she passes it to one person who does not
know. Find the long-term probability that a
person will hear that there is going to be an
election.

¨6. John makes it to work on time one Monday out
of four. On other work days his behaviour is as
follows: If he is late one day, he is twice as likely
to come to work on time the next day as to be
late. If he is on time one day, he is as likely to be
late as not the next day. Find the probability of
his being late and that of his being on time
Wednesdays.
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7. Suppose you have 1¢ and match coins with 
a friend. At each match you either win or lose
1¢ with equal probability. If you go broke or
ever get 4¢, you quit. Assume your friend 
never quits. If the states are 0, 1, 2, 3, and 4
representing your wealth, show that the corre-
sponding transition matrix P is not regular. 
Find the probability that you will go broke after
3 matches.

8. A mouse is put into a maze of compartments, as
in the diagram. Assume that he always leaves
any compartment he enters and that he is
equally likely to take any tunnel entry.

¨(a) If he starts in compartment 1, find the
probability that he is in compartment 4 
after 3 moves.

¨(b) Find the compartment in which he spends
most of his time if he is left for a long time.

9. If a stochastic matrix has a 1 on its main 
diagonal, show that it cannot be regular. Assume
it is not 1 ´ 1.

10. If Sm is the stage-m state vector for a Markov
chain, show that Sm + k = PkSm holds for all m ³ÿ1
and k ³ÿ1 (where P is the transition matrix).

11. A stochastic matrix is doubly stochastic if all
the row sums also equal 1. Find the steady-state
vector for a doubly stochastic matrix.

1̈2. Consider the 2 ´ 2 stochastic matrix 

where 0 < p < 1 and 0 < q < 1.

(a) Show that is the steady-state

vector for P.

(b) Show that Pm converges to the matrix

by first verifying inductively

that

for m = 1, 2, … . (It can be shown that the
sequence of powers P, P 2, P 3, … of any
regular transition matrix converges to the
matrix each of whose columns equals the
steady-state vector for P.)
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1. Solve for the matrix X if: (a) PXQ = R; 
(b) XP = S; where

2. Consider p(X ) = X3
- 5X 2

+ 11X -ÿ4I.

(a) If , compute p(AT ).

¨(b) If p(U ) = 0 where U is n ´ n, find U -1 in terms
of U.

3. Show that, if a (possibly nonhomogeneous)
system of equations is consistent and has more
variables than equations, then it must have

infinitely many solutions. [Hint: Use Theorem 2
§2.2 and Theorem 1 §1.3.]

4. Assume that a system AX = B of linear equations
has at least two distinct solutions Y and Z.
(a) Show that Xk = Y + k(Y - Z ) is a solution for

every k.
¨(b) Show that Xk = Xm implies k = m. 

[Hint: See Example 7 §2.1.]
(c) Deduce that AX = B has infinitely many

solutions.
5. (a) Let A be a 3 ´ 3 matrix with all entries on

and below the main diagonal zero. Show that
A3

= 0.
(b) Generalize to the n ´ n case and prove your

answer.
6. Let Ipq denote the n ´ n matrix with ( p, q)-entry

equal to 1 and all other entries 0. Show that:

p A( ) =
−







1 3
1 0

P Q

R

= −
















=
−









=
− −
− −

−











1 0
2 1
0 3

1 1 1
2 0 3

1 1 4
4 0 6
6 6 6

, ,







=








, S

1 6
3 1

90
Chapter 2 Matrix Algebra

1
3

2

5

4

Supplementary Exercises for Chapter 2

Chapter-2.qxd  12/4/01  11:33 AM  Page 90



91
Section 2.7 An Application to Markov Chains

(a) In = I11 + I22 +
…+ Inn.

(b)

(c) If A = [aij] is n ´ n, then 

¨(d) If A = [aij], then IpqAIrs = aqr Ips for all p, q, r,
and s.

7. A matrix of the form aIn, where a is a number,
is called an n ´ n scalar matrix.
(a) Show that each n ´ n scalar matrix commutes

with every n ´ n matrix.
¨(b) Show that A is a scalar matrix if it commutes

with every n ´ n matrix. [Hint: See part (d) of
Exercise 6.]

8. Let where A, B, C, and D are all 

n ´ n and each commutes with all the others. If
M2

= 0, show that (A +ÿD)3
= 0. [Hint: First show

that A2
= -BC = D2 and that B(A +ÿD) = 0

= C(A + D).]

9. If A is 2 ´ 2, show that A -1
= AT if and only if 

for some u

or for some u.

[Hint: If a2
+ÿb2

= 1, then a = cos u, b = sin u for 
some u. Use cos(u - w) = cos u cosw + sin u sinw.]
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