EXERCISES 2.1

Limits from Graphs

1. For the function $g(x)$ graphed here, find the following limits or explain why they do not exist.
a. $\lim _{x \rightarrow 1} g(x)$
b. $\lim _{x \rightarrow 2} g(x)$
c. $\lim _{x \rightarrow 3} g(x)$

2. For the function $f(t)$ graphed here, find the following limits or explain why they do not exist.
a. $\lim _{t \rightarrow-2} f(t)$
b. $\lim _{t \rightarrow-1} f(t)$
c. $\lim _{t \rightarrow 0} f(t)$

3. Which of the following statements about the function $y=f(x)$ graphed here are true, and which are false?
a. $\lim _{x \rightarrow 0} f(x)$ exists.
b. $\lim _{x \rightarrow 0} f(x)=0$.
c. $\lim _{x \rightarrow 0} f(x)=1$.
d. $\lim _{x \rightarrow 1} f(x)=1$.
e. $\lim _{x \rightarrow 1} f(x)=0$.
f. $\lim _{x \rightarrow x_{0}} f(x)$ exists at every point x_{0} in $(-1,1)$.

4. Which of the following statements about the function $y=f(x)$ graphed here are true, and which are false?
a. $\lim _{x \rightarrow 2} f(x)$ does not exist.
b. $\lim _{x \rightarrow 2} f(x)=2$.
c. $\lim _{x \rightarrow 1} f(x)$ does not exist.
d. $\lim _{x \rightarrow x_{0}} f(x)$ exists at every point x_{0} in $(-1,1)$.
e. $\lim _{x \rightarrow x_{0}} f(x)$ exists at every point x_{0} in $(1,3)$.

Existence of Limits

In Exercises 5 and 6, explain why the limits do not exist.
5. $\lim _{x \rightarrow 0} \frac{x}{|x|}$
6. $\lim _{x \rightarrow 1} \frac{1}{x-1}$
7. Suppose that a function $f(x)$ is defined for all real values of x except $x=x_{0}$. Can anything be said about the existence of $\lim _{x \rightarrow x_{0}} f(x)$? Give reasons for your answer.
8. Suppose that a function $f(x)$ is defined for all x in $[-1,1]$. Can anything be said about the existence of $\lim _{x \rightarrow 0} f(x)$? Give reasons for your answer.
9. If $\lim _{x \rightarrow 1} f(x)=5$, must f be defined at $x=1$? If it is, must $f(1)=5$? Can we conclude anything about the values of f at $x=1$? Explain.
10. If $f(1)=5$, must $\lim _{x \rightarrow 1} f(x)$ exist? If it does, then must $\lim _{x \rightarrow 1} f(x)=5$? Can we conclude anything about $\lim _{x \rightarrow 1} f(x)$? Explain.

Estimating Limits

You will find a graphing calculator useful for Exercises 11-20.
11. Let $f(x)=\left(x^{2}-9\right) /(x+3)$.
a. Make a table of the values of f at the points $x=-3.1$, $-3.01,-3.001$, and so on as far as your calculator can go. Then estimate $\lim _{x \rightarrow-3} f(x)$. What estimate do you arrive at if you evaluate f at $x=-2.9,-2.99,-2.999, \ldots$ instead?
b. Support your conclusions in part (a) by graphing f near $x_{0}=-3$ and using Zoom and Trace to estimate y-values on the graph as $x \rightarrow-3$.
c. Find $\lim _{x \rightarrow-3} f(x)$ algebraically, as in Example 5.
12. Let $g(x)=\left(x^{2}-2\right) /(x-\sqrt{2})$.
a. Make a table of the values of g at the points $x=1.4,1.41$, 1.414 , and so on through successive decimal approximations of $\sqrt{2}$. Estimate $\lim _{x \rightarrow \sqrt{2}} g(x)$.
b. Support your conclusion in part (a) by graphing g near $x_{0}=\sqrt{2}$ and using Zoom and Trace to estimate y-values on the graph as $x \rightarrow \sqrt{2}$.
c. Find $\lim _{x \rightarrow \sqrt{2}} g(x)$ algebraically.
13. Let $G(x)=(x+6) /\left(x^{2}+4 x-12\right)$.
a. Make a table of the values of G at $x=-5.9,-5.99,-5.999$, and so on. Then estimate $\lim _{x \rightarrow-6} G(x)$. What estimate do you arrive at if you evaluate G at $x=-6.1,-6.01,-6.001, \ldots$ instead?
b. Support your conclusions in part (a) by graphing G and using Zoom and Trace to estimate y-values on the graph as $x \rightarrow-6$.
c. Find $\lim _{x \rightarrow-6} G(x)$ algebraically.
14. Let $h(x)=\left(x^{2}-2 x-3\right) /\left(x^{2}-4 x+3\right)$.
a. Make a table of the values of h at $x=2.9,2.99,2.999$, and so on. Then estimate $\lim _{x \rightarrow 3} h(x)$. What estimate do you arrive at if you evaluate h at $x=3.1,3.01,3.001, \ldots$ instead?
b. Support your conclusions in part (a) by graphing h near $x_{0}=3$ and using Zoom and Trace to estimate y-values on the graph as $x \rightarrow 3$.
c. Find $\lim _{x \rightarrow 3} h(x)$ algebraically.
15. Let $f(x)=\left(x^{2}-1\right) /(|x|-1)$.
a. Make tables of the values of f at values of x that approach $x_{0}=-1$ from above and below. Then estimate $\lim _{x \rightarrow-1} f(x)$.
b. Support your conclusion in part (a) by graphing f near $x_{0}=-1$ and using Zoom and Trace to estimate y-values on the graph as $x \rightarrow-1$.
c. Find $\lim _{x \rightarrow-1} f(x)$ algebraically.
16. Let $F(x)=\left(x^{2}+3 x+2\right) /(2-|x|)$.
a. Make tables of values of F at values of x that approach $x_{0}=-2$ from above and below. Then estimate $\lim _{x \rightarrow-2} F(x)$.
b. Support your conclusion in part (a) by graphing F near $x_{0}=-2$ and using Zoom and Trace to estimate y-values on the graph as $x \rightarrow-2$.
c. Find $\lim _{x \rightarrow-2} F(x)$ algebraically.
17. Let $g(\theta)=(\sin \theta) / \theta$.
a. Make a table of the values of g at values of θ that approach $\theta_{0}=0$ from above and below. Then estimate $\lim _{\theta \rightarrow 0} g(\theta)$.
b. Support your conclusion in part (a) by graphing g near $\theta_{0}=0$.
18. Let $G(t)=(1-\cos t) / t^{2}$.
a. Make tables of values of G at values of t that approach $t_{0}=0$ from above and below. Then estimate $\lim _{t \rightarrow 0} G(t)$.
b. Support your conclusion in part (a) by graphing G near $t_{0}=0$.
19. Let $f(x)=x^{1 /(1-x)}$.
a. Make tables of values of f at values of x that approach $x_{0}=1$ from above and below. Does f appear to have a limit as $x \rightarrow 1$? If so, what is it? If not, why not?
b. Support your conclusions in part (a) by graphing f near $x_{0}=1$.
20. Let $f(x)=\left(3^{x}-1\right) / x$.
a. Make tables of values of f at values of x that approach $x_{0}=0$ from above and below. Does f appear to have a limit as $x \rightarrow 0$? If so, what is it? If not, why not?
b. Support your conclusions in part (a) by graphing f near $x_{0}=0$.

Limits by Substitution

In Exercises 21-28, find the limits by substitution. Support your answers with a computer or calculator if available.
21. $\lim _{x \rightarrow 2} 2 x$
22. $\lim _{x \rightarrow 0} 2 x$
23. $\lim _{x \rightarrow 1 / 3}(3 x-1)$
24. $\lim _{x \rightarrow 1} \frac{-1}{(3 x-1)}$
25. $\lim _{x \rightarrow-1} 3 x(2 x-1)$
26. $\lim _{x \rightarrow-1} \frac{3 x^{2}}{2 x-1}$
27. $\lim _{x \rightarrow \pi / 2} x \sin x$
28. $\lim _{x \rightarrow \pi} \frac{\cos x}{1-\pi}$

Average Rates of Change

In Exercises 29-34, find the average rate of change of the function over the given interval or intervals.
29. $f(x)=x^{3}+1$;
a. $[2,3]$ b. $[-1,1]$
30. $g(x)=x^{2}$;
a. $[-1,1]$ b. $[-2,0]$
31. $h(t)=\cot t$;
a. $[\pi / 4,3 \pi / 4] \quad$ b. $[\pi / 6, \pi / 2]$
32. $g(t)=2+\cos t$;
a. $[0, \pi] \quad$ b. $[-\pi, \pi]$
33. $R(\theta)=\sqrt{4 \theta+1} ; \quad[0,2]$
34. $P(\theta)=\theta^{3}-4 \theta^{2}+5 \theta$; $[1,2]$
35. A Ford Mustang Cobra's speed The accompanying figure shows the time-to-distance graph for a 1994 Ford Mustang Cobra accelerating from a standstill.

a. Estimate the slopes of secants $P Q_{1}, P Q_{2}, P Q_{3}$, and $P Q_{4}$, arranging them in order in a table like the one in Figure 2.3. What are the appropriate units for these slopes?
b. Then estimate the Cobra's speed at time $t=20 \mathrm{sec}$.
36. The accompanying figure shows the plot of distance fallen versus time for an object that fell from the lunar landing module a distance 80 m to the surface of the moon.
a. Estimate the slopes of the secants $P Q_{1}, P Q_{2}, P Q_{3}$, and $P Q_{4}$, arranging them in a table like the one in Figure 2.3.
b. About how fast was the object going when it hit the surface?

37. The profits of a small company for each of the first five years of its operation are given in the following table:

Year	Profit in \$1000s
1990	6
1991	27
1992	62
1993	111
1994	174

a. Plot points representing the profit as a function of year, and join them by as smooth a curve as you can.
b. What is the average rate of increase of the profits between 1992 and 1994?
c. Use your graph to estimate the rate at which the profits were changing in 1992.
38. Make a table of values for the function $F(x)=(x+2) /(x-2)$ at the points $x=1.2, x=11 / 10, x=101 / 100, x=1001 / 1000$, $x=10001 / 10000$, and $x=1$.
a. Find the average rate of change of $F(x)$ over the intervals $[1, x]$ for each $x \neq 1$ in your table.
b. Extending the table if necessary, try to determine the rate of change of $F(x)$ at $x=1$.
39. Let $g(x)=\sqrt{x}$ for $x \geq 0$.
a. Find the average rate of change of $g(x)$ with respect to x over the intervals $[1,2],[1,1.5]$ and $[1,1+h]$.
b. Make a table of values of the average rate of change of g with respect to x over the interval $[1,1+h]$ for some values of h
approaching zero, say $h=0.1,0.01,0.001,0.0001,0.00001$, and 0.000001 .
c. What does your table indicate is the rate of change of $g(x)$ with respect to x at $x=1$?
d. Calculate the limit as h approaches zero of the average rate of change of $g(x)$ with respect to x over the interval $[1,1+h]$.
40. Let $f(t)=1 / t$ for $t \neq 0$.
a. Find the average rate of change of f with respect to t over the intervals (i) from $t=2$ to $t=3$, and (ii) from $t=2$ to $t=T$.
b. Make a table of values of the average rate of change of f with respect to t over the interval $[2, T]$, for some values of T approaching 2 , say $T=2.1,2.01,2.001,2.0001,2.00001$, and 2.000001 .
c. What does your table indicate is the rate of change of f with respect to t at $t=2$?
d. Calculate the limit as T approaches 2 of the average rate of change of f with respect to t over the interval from 2 to T. You will have to do some algebra before you can substitute $T=2$.

COMPUTER EXPLORATIONS

Graphical Estimates of Limits

In Exercises 41-46, use a CAS to perform the following steps:
a. Plot the function near the point x_{0} being approached.
b. From your plot guess the value of the limit.
41. $\lim _{x \rightarrow 2} \frac{x^{4}-16}{x-2}$
42. $\lim _{x \rightarrow-1} \frac{x^{3}-x^{2}-5 x-3}{(x+1)^{2}}$
43. $\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+x}-1}{x}$
45. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x \sin x}$
44. $\lim _{x \rightarrow 3} \frac{x^{2}-9}{\sqrt{x^{2}+7}-4}$
46. $\lim _{x \rightarrow 0} \frac{2 x^{2}}{3-3 \cos x}$

