EXERCISES 2.3

Centering Intervals About a Point

In Exercises 1-6, sketch the interval (a, b) on the x-axis with the point x_{0} inside. Then find a value of $\delta>0$ such that for all $x, 0<\left|x-x_{0}\right|<\delta \Rightarrow a<x<b$.

$$
\begin{aligned}
& \text { 1. } a=1, \quad b=7, \quad x_{0}=5 \\
& \text { 2. } a=1, \quad b=7, \quad x_{0}=2 \\
& \text { 3. } a=-7 / 2, \quad b=-1 / 2, \quad x_{0}=-3 \\
& \text { 4. } a=-7 / 2, \quad b=-1 / 2, \quad x_{0}=-3 / 2 \\
& \text { 5. } a=4 / 9, \quad b=4 / 7, \quad x_{0}=1 / 2 \\
& \text { 6. } a=2.7591, \quad b=3.2391, \quad x_{0}=3
\end{aligned}
$$

Finding Deltas Graphically

In Exercises 7-14, use the graphs to find a $\delta>0$ such that for all x

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

8.

NOT TO SCALE

9.

11.

NOT TO SCALE
12.

NOT TO SCALE
13.

14.

Finding Deltas Algebraically

Each of Exercises $15-30$ gives a function $f(x)$ and numbers L, x_{0} and $\epsilon>0$. In each case, find an open interval about x_{0} on which the inequality $|f(x)-L|<\epsilon$ holds. Then give a value for $\delta>0$ such that for all x satisfying $0<\left|x-x_{0}\right|<\delta$ the inequality $|f(x)-L|<\epsilon$ holds.
15. $f(x)=x+1, \quad L=5, \quad x_{0}=4, \quad \epsilon=0.01$
16. $f(x)=2 x-2, \quad L=-6, \quad x_{0}=-2, \quad \epsilon=0.02$
17. $f(x)=\sqrt{x+1}, \quad L=1, \quad x_{0}=0, \quad \epsilon=0.1$
18. $f(x)=\sqrt{x}, \quad L=1 / 2, \quad x_{0}=1 / 4, \quad \epsilon=0.1$
19. $f(x)=\sqrt{19-x}, \quad L=3, \quad x_{0}=10, \quad \epsilon=1$
20. $f(x)=\sqrt{x-7}, \quad L=4, \quad x_{0}=23, \quad \epsilon=1$
21. $f(x)=1 / x, \quad L=1 / 4, \quad x_{0}=4, \quad \epsilon=0.05$
22. $f(x)=x^{2}, \quad L=3, \quad x_{0}=\sqrt{3}, \quad \epsilon=0.1$
23. $f(x)=x^{2}, \quad L=4, \quad x_{0}=-2, \quad \epsilon=0.5$
24. $f(x)=1 / x, \quad L=-1, \quad x_{0}=-1, \quad \epsilon=0.1$
25. $f(x)=x^{2}-5, \quad L=11, \quad x_{0}=4, \quad \epsilon=1$
26. $f(x)=120 / x, \quad L=5, \quad x_{0}=24, \quad \epsilon=1$
27. $f(x)=m x, \quad m>0, \quad L=2 m, \quad x_{0}=2, \quad \epsilon=0.03$
28. $f(x)=m x, \quad m>0, \quad L=3 m, \quad x_{0}=3$,
$\epsilon=c>0$
29. $f(x)=m x+b, \quad m>0, \quad L=(m / 2)+b$,
$x_{0}=1 / 2, \quad \epsilon=c>0$
30. $f(x)=m x+b, \quad m>0, \quad L=m+b, \quad x_{0}=1$, $\epsilon=0.05$

More on Formal Limits

Each of Exercises 31-36 gives a function $f(x)$, a point x_{0}, and a positive number ϵ. Find $L=\lim _{x \rightarrow x_{0}} f(x)$. Then find a number $\delta>0$ such that for all x

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

31. $f(x)=3-2 x, \quad x_{0}=3, \quad \epsilon=0.02$
32. $f(x)=-3 x-2, \quad x_{0}=-1, \quad \epsilon=0.03$
33. $f(x)=\frac{x^{2}-4}{x-2}, \quad x_{0}=2, \quad \epsilon=0.05$
34. $f(x)=\frac{x^{2}+6 x+5}{x+5}, \quad x_{0}=-5, \quad \epsilon=0.05$
35. $f(x)=\sqrt{1-5 x}, \quad x_{0}=-3, \quad \epsilon=0.5$
36. $f(x)=4 / x, \quad x_{0}=2, \quad \epsilon=0.4$

Prove the limit statements in Exercises 37-50.
37. $\lim _{x \rightarrow 4}(9-x)=5$
38. $\lim _{x \rightarrow 3}(3 x-7)=2$
39. $\lim _{x \rightarrow 9} \sqrt{x-5}=2$
40. $\lim _{x \rightarrow 0} \sqrt{4-x}=2$
41. $\lim _{x \rightarrow 1} f(x)=1$ if $f(x)= \begin{cases}x^{2}, & x \neq 1 \\ 2, & x=1\end{cases}$
42. $\lim _{x \rightarrow-2} f(x)=4$ if $f(x)= \begin{cases}x^{2}, & x \neq-2 \\ 1, & x=-2\end{cases}$
43. $\lim _{x \rightarrow 1} \frac{1}{x}=1$
44. $\lim _{x \rightarrow \sqrt{3}} \frac{1}{x^{2}}=\frac{1}{3}$
45. $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x+3}=-6 \quad$ 46. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$
47. $\lim _{x \rightarrow 1} f(x)=2$ if $f(x)= \begin{cases}4-2 x, & x<1 \\ 6 x-4, & x \geq 1\end{cases}$
48. $\lim _{x \rightarrow 0} f(x)=0$ if $f(x)= \begin{cases}2 x, & x<0 \\ x / 2, & x \geq 0\end{cases}$
49. $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$

50. $\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}=0$

Theory and Examples

51. Define what it means to say that $\lim _{x \rightarrow 0} g(x)=k$.
52. Prove that $\lim _{x \rightarrow c} f(x)=L$ if and only if $\lim _{h \rightarrow 0} f(h+c)=L$.
53. A wrong statement about limits Show by example that the following statement is wrong.
The number L is the limit of $f(x)$ as x approaches x_{0} if $f(x)$ gets closer to L as x approaches x_{0}.
Explain why the function in your example does not have the given value of L as a limit as $x \rightarrow x_{0}$.
54. Another wrong statement about limits Show by example that the following statement is wrong.
The number L is the limit of $f(x)$ as x approaches x_{0} if, given any $\epsilon>0$, there exists a value of x for which $|f(x)-L|<\epsilon$.
Explain why the function in your example does not have the given value of L as a limit as $x \rightarrow x_{0}$.
55. Grinding engine cylinders Before contracting to grind engine cylinders to a cross-sectional area of $9 \mathrm{in}^{2}$, you need to know how much deviation from the ideal cylinder diameter of $x_{0}=3.385$ in. you can allow and still have the area come within $0.01 \mathrm{in}^{2}$ of the required $9 \mathrm{in}^{2}$. To find out, you let $A=\pi(x / 2)^{2}$ and look for the interval in which you must hold x to make $|A-9| \leq 0.01$. What interval do you find?
56. Manufacturing electrical resistors Ohm's law for electrical circuits like the one shown in the accompanying figure states that $V=R I$. In this equation, V is a constant voltage, I is the current in amperes, and R is the resistance in ohms. Your firm has been asked to supply the resistors for a circuit in which V will be 120
volts and I is to be $5 \pm 0.1 \mathrm{amp}$. In what interval does R have to lie for I to be within 0.1 amp of the value $I_{0}=5$?

When Is a Number L Not the Limit of $f(x)$

 as $x \rightarrow x_{0}$?We can prove that $\lim _{x \rightarrow x_{0}} f(x) \neq L$ by providing an $\boldsymbol{\epsilon}>0$ such that no possible $\delta>0$ satisfies the condition

$$
\text { For all } x, \quad 0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

We accomplish this for our candidate ϵ by showing that for each $\delta>0$ there exists a value of x such that

$$
0<\left|x-x_{0}\right|<\delta \quad \text { and } \quad|f(x)-L| \geq \epsilon
$$

57. Let $f(x)= \begin{cases}x, & x<1 \\ x+1, & x>1 .\end{cases}$

a. Let $\boldsymbol{\epsilon}=1 / 2$. Show that no possible $\delta>0$ satisfies the following condition:
For all $x, \quad 0<|x-1|<\delta \quad \Rightarrow \quad|f(x)-2|<1 / 2$.
That is, for each $\delta>0$ show that there is a value of x such that

$$
0<|x-1|<\delta \quad \text { and } \quad|f(x)-2| \geq 1 / 2
$$

This will show that $\lim _{x \rightarrow 1} f(x) \neq 2$.
b. Show that $\lim _{x \rightarrow 1} f(x) \neq 1$.
c. Show that $\lim _{x \rightarrow 1} f(x) \neq 1.5$.
58. Let $h(x)= \begin{cases}x^{2}, & x<2 \\ 3, & x=2 \\ 2, & x>2 .\end{cases}$

Show that
a. $\lim _{x \rightarrow 2} h(x) \neq 4$
b. $\lim _{x \rightarrow 2} h(x) \neq 3$
c. $\lim _{x \rightarrow 2} h(x) \neq 2$
59. For the function graphed here, explain why
a. $\lim _{x \rightarrow 3} f(x) \neq 4$
b. $\lim _{x \rightarrow 3} f(x) \neq 4.8$
c. $\lim _{x \rightarrow 3} f(x) \neq 3$

60. a. For the function graphed here, show that $\lim _{x \rightarrow-1} g(x) \neq 2$.
b. Does $\lim _{x \rightarrow-1} g(x)$ appear to exist? If so, what is the value of the limit? If not, why not?

COMPUTER EXPLORATIONS

In Exercises 61-66, you will further explore finding deltas graphically. Use a CAS to perform the following steps:
a. Plot the function $y=f(x)$ near the point x_{0} being approached.
b. Guess the value of the limit L and then evaluate the limit symbolically to see if you guessed correctly.
c. Using the value $\epsilon=0.2$, graph the banding lines $y_{1}=L-\epsilon$ and $y_{2}=L+\epsilon$ together with the function f near x_{0}.
d. From your graph in part (c), estimate a $\delta>0$ such that for all x

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

Test your estimate by plotting f, y_{1}, and y_{2} over the interval $0<\left|x-x_{0}\right|<\delta$. For your viewing window use $x_{0}-2 \delta \leq x \leq x_{0}+2 \delta$ and $L-2 \epsilon \leq y \leq L+2 \epsilon$. If any function values lie outside the interval $[L-\epsilon, L+\epsilon]$, your choice of δ was too large. Try again with a smaller estimate.
e. Repeat parts (c) and (d) successively for $\epsilon=0.1,0.05$, and 0.001 .
61. $f(x)=\frac{x^{4}-81}{x-3}, \quad x_{0}=3$
62. $f(x)=\frac{5 x^{3}+9 x^{2}}{2 x^{5}+3 x^{2}}, \quad x_{0}=0$
63. $f(x)=\frac{\sin 2 x}{3 x}, \quad x_{0}=0$
64. $f(x)=\frac{x(1-\cos x)}{x-\sin x}, \quad x_{0}=0$
65. $f(x)=\frac{\sqrt[3]{x}-1}{x-1}, \quad x_{0}=1$
66. $f(x)=\frac{3 x^{2}-(7 x+1) \sqrt{x}+5}{x-1}, \quad x_{0}=1$

