2.7 Tangents and Derivatives

This section continues the discussion of secants and tangents begun in Section 2.1. We calculate limits of secant slopes to find tangents to curves.

What Is a Tangent to a Curve?

For circles, tangency is straightforward. A line L is tangent to a circle at a point P if L passes through P perpendicular to the radius at P (Figure 2.63). Such a line just touches

FIGURE 2.63 L is tangent to the circle at P if it passes through P perpendicular to radius $O P$.
the circle. But what does it mean to say that a line L is tangent to some other curve C at a point P ? Generalizing from the geometry of the circle, we might say that it means one of the following:

1. L passes through P perpendicular to the line from P to the center of C.
2. L passes through only one point of C, namely P.
3. L passes through P and lies on one side of C only.

Although these statements are valid if C is a circle, none of them works consistently for more general curves. Most curves do not have centers, and a line we may want to call tangent may intersect C at other points or cross C at the point of tangency (Figure 2.64).

L meets C only at P but is not tangent to C.

L is tangent to C at P but meets C at several points.

FIGURE 2.64 Exploding myths about tangent lines.

To define tangency for general curves, we need a dynamic approach that takes into account the behavior of the secants through P and nearby points Q as Q moves toward P along the curve (Figure 2.65). It goes like this:

1. We start with what we can calculate, namely the slope of the secant $P Q$.
2. Investigate the limit of the secant slope as Q approaches P along the curve.
3. If the limit exists, take it to be the slope of the curve at P and define the tangent to the curve at P to be the line through P with this slope.

This approach is what we were doing in the falling-rock and fruit fly examples in Section 2.1.

FIGURE 2.65 The dynamic approach to tangency. The tangent to the curve at P is the line through P whose slope is the limit of the secant slopes as $Q \rightarrow P$ from either side.

EXAMPLE 1 Tangent Line to a Parabola

Find the slope of the parabola $y=x^{2}$ at the point $P(2,4)$. Write an equation for the tangent to the parabola at this point.

Solution We begin with a secant line through $P(2,4)$ and $Q\left(2+h,(2+h)^{2}\right)$ nearby. We then write an expression for the slope of the secant $P Q$ and investigate what happens to the slope as Q approaches P along the curve:

$$
\begin{aligned}
\text { Secant slope }=\frac{\Delta y}{\Delta x}=\frac{(2+h)^{2}-2^{2}}{h} & =\frac{h^{2}+4 h+4-4}{h} \\
& =\frac{h^{2}+4 h}{h}=h+4
\end{aligned}
$$

If $h>0$, then Q lies above and to the right of P, as in Figure 2.66. If $h<0$, then Q lies to the left of P (not shown). In either case, as Q approaches P along the curve, h approaches zero and the secant slope approaches 4:

$$
\lim _{h \rightarrow 0}(h+4)=4
$$

We take 4 to be the parabola's slope at P.
The tangent to the parabola at P is the line through P with slope 4:

$$
\begin{aligned}
& y=4+4(x-2) \quad \text { Point-slope equation } \\
& y=4 x-4
\end{aligned}
$$

FIGURE 2.66 Finding the slope of the parabola $y=x^{2}$ at the point $P(2,4)$ (Example 1).

Finding a Tangent to the Graph of a Function

The problem of finding a tangent to a curve was the dominant mathematical problem of the early seventeenth century. In optics, the tangent determined the angle at which a ray of light entered a curved lens. In mechanics, the tangent determined the direction of a body's motion at every point along its path. In geometry, the tangents to two curves at a point of intersection determined the angles at which they intersected. To find a tangent to an arbitrary curve $y=f(x)$ at a point $P\left(x_{0}, f\left(x_{0}\right)\right)$, we use the same dynamic procedure. We calculate the slope of the secant through P and a point $Q\left(x_{0}+h, f\left(x_{0}+h\right)\right)$. We then investigate the limit of the slope as $h \rightarrow 0$ (Figure 2.67). If the limit exists, we call it the slope of the curve at P and define the tangent at P to be the line through P having this slope.

FIGURE 2.67 The slope of the tangent line at P is $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$.

DEFINITIONS Slope, Tangent Line

The slope of the curve $y=f(x)$ at the point $P\left(x_{0}, f\left(x_{0}\right)\right)$ is the number

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \quad \text { (provided the limit exists). }
$$

The tangent line to the curve at P is the line through P with this slope.

Whenever we make a new definition, we try it on familiar objects to be sure it is consistent with results we expect in familiar cases. Example 2 shows that the new definition of slope agrees with the old definition from Section 1.2 when we apply it to nonvertical lines.

EXAMPLE 2 Testing the Definition

Show that the line $y=m x+b$ is its own tangent at any point $\left(x_{0}, m x_{0}+b\right)$.
Solution We let $f(x)=m x+b$ and organize the work into three steps.

1. Find $f\left(x_{0}\right)$ and $f\left(x_{0}+h\right)$.

$$
\begin{aligned}
f\left(x_{0}\right) & =m x_{0}+b \\
f\left(x_{0}+h\right) & =m\left(x_{0}+h\right)+b=m x_{0}+m h+b
\end{aligned}
$$

2. Find the slope $\lim _{h \rightarrow 0}\left(f\left(x_{0}+h\right)-f\left(x_{0}\right)\right) / h$.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} & =\lim _{h \rightarrow 0} \frac{\left(m x_{0}+m h+b\right)-\left(m x_{0}+b\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{m h}{h}=m
\end{aligned}
$$

3. Find the tangent line using the point-slope equation. The tangent line at the point $\left(x_{0}, m x_{0}+b\right)$ is

$$
\begin{aligned}
& y=\left(m x_{0}+b\right)+m\left(x-x_{0}\right) \\
& y=m x_{0}+b+m x-m x_{0} \\
& y=m x+b
\end{aligned}
$$

Let's summarize the steps in Example 2.

Finding the Tangent to the Curve $y=f(x)$ at $\left(x_{0}, y_{0}\right)$

1. Calculate $f\left(x_{0}\right)$ and $f\left(x_{0}+h\right)$.
2. Calculate the slope

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

3. If the limit exists, find the tangent line as

$$
y=y_{0}+m\left(x-x_{0}\right) .
$$

EXAMPLE 3 Slope and Tangent to $y=1 / x, x \neq 0$

(a) Find the slope of the curve $y=1 / x$ at $x=a \neq 0$.
(b) Where does the slope equal $-1 / 4$?
(c) What happens to the tangent to the curve at the point $(a, 1 / a)$ as a changes?

Solution

(a) Here $f(x)=1 / x$. The slope at $(a, 1 / a)$ is

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} & =\lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \frac{a-(a+h)}{a(a+h)} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h a(a+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{a(a+h)}=-\frac{1}{a^{2}} .
\end{aligned}
$$

Notice how we had to keep writing " $\lim _{h \rightarrow 0}$ " before each fraction until the stage where we could evaluate the limit by substituting $h=0$. The number a may be positive or negative, but not 0 .
(b) The slope of $y=1 / x$ at the point where $x=a$ is $-1 / a^{2}$. It will be $-1 / 4$ provided that

$$
-\frac{1}{a^{2}}=-\frac{1}{4}
$$

This equation is equivalent to $a^{2}=4$, so $a=2$ or $a=-2$. The curve has slope $-1 / 4$ at the two points $(2,1 / 2)$ and $(-2,-1 / 2)$ (Figure 2.68).
(c) Notice that the slope $-1 / a^{2}$ is always negative if $a \neq 0$. As $a \rightarrow 0^{+}$, the slope approaches $-\infty$ and the tangent becomes increasingly steep (Figure 2.69). We see this situation again as $a \rightarrow 0^{-}$. As a moves away from the origin in either direction, the slope approaches 0^{-}and the tangent levels off.

FIGURE 2.68 The two tangent lines to $y=1 / x$ having slope $-1 / 4$ (Example 3).

FIGURE 2.69 The tangent slopes, steep near the origin, become more gradual as the point of tangency moves away.

Rates of Change: Derivative at a Point

The expression

$$
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

is called the difference quotient of \boldsymbol{f} at $\boldsymbol{x}_{\mathbf{0}}$ with increment \boldsymbol{h}. If the difference quotient has a limit as h approaches zero, that limit is called the derivative of \boldsymbol{f} at $\boldsymbol{x}_{\mathbf{0}}$. If we interpret the difference quotient as a secant slope, the derivative gives the slope of the curve and tangent at the point where $x=x_{0}$. If we interpret the difference quotient as an average rate of change, as we did in Section 2.1, the derivative gives the function's rate of change with respect to x at the point $x=x_{0}$. The derivative is one of the two most important mathematical objects considered in calculus. We begin a thorough study of it in Chapter 3. The other important object is the integral, and we initiate its study in Chapter 5.

EXAMPLE 4 Instantaneous Speed (Continuation of Section 2.1, Examples 1 and 2)

In Examples 1 and 2 in Section 2.1, we studied the speed of a rock falling freely from rest near the surface of the earth. We knew that the rock fell $y=16 t^{2}$ feet during the first $t \mathrm{sec}$, and we used a sequence of average rates over increasingly short intervals to estimate the rock's speed at the instant $t=1$. Exactly what was the rock's speed at this time?

Solution We let $f(t)=16 t^{2}$. The average speed of the rock over the interval between $t=1$ and $t=1+h$ seconds was

$$
\frac{f(1+h)-f(1)}{h}=\frac{16(1+h)^{2}-16(1)^{2}}{h}=\frac{16\left(h^{2}+2 h\right)}{h}=16(h+2) .
$$

The rock's speed at the instant $t=1$ was

$$
\lim _{h \rightarrow 0} 16(h+2)=16(0+2)=32 \mathrm{ft} / \mathrm{sec}
$$

Our original estimate of $32 \mathrm{ft} / \mathrm{sec}$ was right.

Summary

We have been discussing slopes of curves, lines tangent to a curve, the rate of change of a function, the limit of the difference quotient, and the derivative of a function at a point. All of these ideas refer to the same thing, summarized here:

1. The slope of $y=f(x)$ at $x=x_{0}$
2. The slope of the tangent to the curve $y=f(x)$ at $x=x_{0}$
3. The rate of change of $f(x)$ with respect to x at $x=x_{0}$
4. The derivative of f at $x=x_{0}$
5. The limit of the difference quotient, $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
