
142 Chapter 2: Limits and Continuity

Chapter 2 Practice Exercises

Limits and Continuity
1. Graph the function

Then discuss, in detail, limits, one-sided limits, continuity, and
one-sided continuity of ƒ at and 1. Are any of the dis-
continuities removable? Explain.

x = -1, 0 ,

ƒsxd = e   1, x … -1

-x, -1 6 x 6 0

  1, x = 0

-x, 0 6 x 6 1

  1, x Ú 1.

2. Repeat the instructions of Exercise 1 for

3. Suppose that ƒ(t) and g (t) are defined for all t and that 
and Find the limit as of the

following functions.

a. 3ƒ(t) b.

c. d.

e. cos (g (t)) f.

g. h. 1>ƒ(t)ƒstd + g std
ƒ ƒstd ƒ

ƒstd
g std - 7

ƒstd # g std

sƒstdd2

t : t0limt:t0 g std = 0.ƒstd = -7
limt:t0

ƒsxd = d   0, x … -1

1>x, 0 6 ƒ x ƒ 6 1

  0, x = 1

  1, x 7 1.
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4. Suppose that ƒ(x) and g (x) are defined for all x and that
and Find the limits as

of the following functions.

a. b.

c. d.

e. f.

In Exercises 5 and 6, find the value that must have if the
given limit statements hold.

5. 6.

7. On what intervals are the following functions continuous?

a. b.

c. d.

8. On what intervals are the following functions continuous?

a. b.

c. d.

Finding Limits
In Exercises 9–16, find the limit or explain why it does not exist.

9.

a. as b. as 

10.

a. as b. as 

11. 12.

13. 14.

15. 16.

In Exercises 17–20, find the limit of g (x) as x approaches the indi-
cated value.

17. 18.

19. 20.

Limits at Infinity
Find the limits in Exercises 21–30.

21. 22. lim
x: -q

  
2x2

+ 3
5x2

+ 7
lim

x: q

  
2x + 3
5x + 7

lim
x: -2

  
5 - x22g sxd

= 0lim
x:1

  
3x2

+ 1
g sxd

= q

lim
x:25

   
1

x + g sxd
= 2lim

x:0+ 
s4g sxdd1>3

= 2

lim
x:0

 
s2 + xd3

- 8
xlim

x:0
 

1
2 + x

-

1
2

x

lim
x:0

 
sx + hd2

- x2

h
lim
h:0

 
sx + hd2

- x2

h

lim
x:a

  
x2

- a2

x4
- a4lim

x:1
 
1 - 2x

1 - x

x : -1x : 0

lim 
x2

+ x

x5
+ 2x4

+ x3

x : 2x : 0

lim 
x2

- 4x + 4
x3

+ 5x2
- 14x

ksxd =

sin x
xhsxd =

cos x
x - p

g sxd = csc xƒsxd = tan x

ksxd = x-1>6hsxd = x-2>3
g sxd = x3>4ƒsxd = x1>3

lim
x: -4

ax lim
x:0

 g sxdb = 2lim
x:0
a4 - g sxd

x b = 1

limx:0 g sxd

ƒsxd #  cos x

x - 1
x + ƒsxd

1>ƒ(x)ƒsxd + g sxd
g sxd # ƒsxd-g sxd

x : 0
limx:0 g sxd = 22.limx:0 ƒsxd = 1>2 23. 24.

25. 26.

27.

28.

29. 30.

Continuous Extension
31. Can be extended to be continuous at

or Give reasons for your answers. (Graph the func-
tion—you will find the graph interesting.)

32. Explain why the function has no continuous ex-
tension to 

In Exercises 33–36, graph the function to see whether it appears to
have a continuous extension to the given point a. If it does, use Trace
and Zoom to find a good candidate for the extended function’s value
at a. If the function does not appear to have a continuous extension,
can it be extended to be continuous from the right or left? If so, what
do you think the extended function’s value should be?

33. 34.

35. 36.

Roots
37. Let 

a. Show that ƒ has a zero between and 2.

b. Solve the equation graphically with an error of
magnitude at most 

c. It can be shown that the exact value of the solution in part (b) is

Evaluate this exact answer and compare it with the value you
found in part (b).

38. Let 

a. Show that ƒ has a zero between and 0.

b. Solve the equation graphically with an error of
magnitude at most 

c. It can be shown that the exact value of the solution in part (b) is

Evaluate this exact answer and compare it with the value you
found in part (b).

aA19
27

- 1b1>3
- aA19

27
+ 1b1>3

10-4 .
ƒsud = 0

-2

ƒsud = u3
- 2u + 2.

a1
2

+

269
18
b1>3

+ a1
2

-

269
18
b1>3

10-8 .
ƒsxd = 0

-1

ƒsxd = x3
- x - 1.

k sxd =

x

1 - 2 ƒ x ƒ

, a = 0hstd = s1 + ƒ t ƒd1>t, a = 0

g sud =

5 cos u

4u - 2p
 , a = p>2ƒsxd =

x - 1

x -
42x

 , a = 1

x = 0.
ƒsxd = sin s1>xd

-1?x = 1
ƒsxd = xsx2

- 1d> ƒ x2
- 1 ƒ

lim
x: q

  
x2>3

+ x-1

x2>3
+ cos2 x

lim
x: q

 
x + sin x + 22x

x + sin x

lim
u: q

 
cos u - 1
u
 sIf you have a grapher, try graphing

ƒsxd = xscos s1>xd - 1d near the origin to

“see” the limit at infinity.d

lim
x: q

  
sin x:x; sIf you have a grapher, try graphing the function

for -5 … x … 5.d

lim
x: q

  
x4

+ x3

12x3
+ 128

lim
x: -q

 
x2

- 7x
x + 1

lim
x: q

  
1

x2
- 7x + 1

lim
x: -q

 
x2

- 4x + 8
3x3
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