Chapter 2 Practice Exercises

Limits and Continuity

1. Graph the function

$$f(x) = \begin{cases} 1, & x \le -1 \\ -x, & -1 < x < 0 \\ 1, & x = 0 \\ -x, & 0 < x < 1 \\ 1, & x \ge 1. \end{cases}$$

Then discuss, in detail, limits, one-sided limits, continuity, and one-sided continuity of f at x = -1, 0, and 1. Are any of the discontinuities removable? Explain.

2. Repeat the instructions of Exercise 1 for

$$f(x) = \begin{cases} 0, & x \le -1\\ 1/x, & 0 < |x| < 1\\ 0, & x = 1\\ 1, & x > 1. \end{cases}$$

- **3.** Suppose that f(t) and g(t) are defined for all t and that $\lim_{t \to t_0} f(t) = -7$ and $\lim_{t \to t_0} g(t) = 0$. Find the limit as $t \to t_0$ of the following functions.
 - **a.** 3f(t)**b.** $(f(t))^2$ **c.** $f(t) \cdot g(t)$ **d.** $\frac{f(t)}{g(t) 7}$ **e.** $\cos(g(t))$ **f.** |f(t)|**g.** f(t) + g(t)**h.** 1/f(t)

- **4.** Suppose that f(x) and g(x) are defined for all x and that $\lim_{x\to 0} f(x) = 1/2$ and $\lim_{x\to 0} g(x) = \sqrt{2}$. Find the limits as $x \to 0$ of the following functions.
 - **a.** -g(x) **b.** $g(x) \cdot f(x)$
 c. f(x) + g(x) **d.** 1/f(x)

 e. x + f(x) **f.** $\frac{f(x) \cdot \cos x}{x 1}$

In Exercises 5 and 6, find the value that $\lim_{x\to 0} g(x)$ must have if the given limit statements hold.

- 5. $\lim_{x \to 0} \left(\frac{4 g(x)}{x} \right) = 1$ 6. $\lim_{x \to -4} \left(x \lim_{x \to 0} g(x) \right) = 2$
- 7. On what intervals are the following functions continuous?
 - **a.** $f(x) = x^{1/3}$ **b.** $g(x) = x^{3/4}$ **c.** $h(x) = x^{-2/3}$ **d.** $k(x) = x^{-1/6}$
- 8. On what intervals are the following functions continuous?
 - **a.** $f(x) = \tan x$ **b.** $g(x) = \csc x$ **c.** $h(x) = \frac{\cos x}{x - \pi}$ **d.** $k(x) = \frac{\sin x}{x}$

Finding Limits

In Exercises 9–16, find the limit or explain why it does not exist.

9.
$$\lim \frac{x^2 - 4x + 4}{x^3 + 5x^2 - 14x}$$

a. as $x \to 0$
b. as $x \to 2$
10.
$$\lim \frac{x^2 + x}{x^5 + 2x^4 + x^3}$$

a. as $x \to 0$
b. as $x \to -1$
11.
$$\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}$$

12.
$$\lim_{x \to a} \frac{x^2 - a^2}{x^4 - a^4}$$

13.
$$\lim_{h \to 0} \frac{(x + h)^2 - x^2}{h}$$

14.
$$\lim_{x \to 0} \frac{(x + h)^2 - x^2}{h}$$

15.
$$\lim_{x \to 0} \frac{\frac{1}{2 + x} - \frac{1}{2}}{x}$$

16.
$$\lim_{x \to 0} \frac{(2 + x)^3 - 8}{x}$$

In Exercises 17–20, find the limit of g(x) as x approaches the indicated value.

17.
$$\lim_{x \to 0^+} (4g(x))^{1/3} = 2$$

18. $\lim_{x \to \sqrt{5}} \frac{1}{x + g(x)} = 2$
19. $\lim_{x \to 1} \frac{3x^2 + 1}{g(x)} = \infty$
20. $\lim_{x \to -2} \frac{5 - x^2}{\sqrt{g(x)}} = 0$

Limits at Infinity

Find the limits in Exercises 21–30.

21.
$$\lim_{x \to \infty} \frac{2x+3}{5x+7}$$
 22.
$$\lim_{x \to -\infty} \frac{2x^2+3}{5x^2+7}$$

23.
$$\lim_{x \to -\infty} \frac{x^2 - 4x + 8}{3x^3}$$
24.
$$\lim_{x \to \infty} \frac{1}{x^2 - 7x + 1}$$
25.
$$\lim_{x \to -\infty} \frac{x^2 - 7x}{x + 1}$$
26.
$$\lim_{x \to \infty} \frac{x^4 + x^3}{12x^3 + 128}$$

27. $\lim_{x \to \infty} \frac{\sin x}{|x|}$ (If you have a grapher, try graphing the function for $-5 \le x \le 5$.)

28. $\lim_{\theta \to \infty} \frac{\cos \theta - 1}{\theta}$ (If you have a grapher, try graphing $f(x) = x(\cos (1/x) - 1)$ near the origin to "see" the limit at infinity.)

29.
$$\lim_{x \to \infty} \frac{x + \sin x + 2\sqrt{x}}{x + \sin x}$$
 30.
$$\lim_{x \to \infty} \frac{x^{2/3} + x^{-1}}{x^{2/3} + \cos^2 x}$$

Continuous Extension

- **31.** Can $f(x) = x(x^2 1)/|x^2 1|$ be extended to be continuous at x = 1 or -1? Give reasons for your answers. (Graph the function—you will find the graph interesting.)
- **32.** Explain why the function $f(x) = \sin(1/x)$ has no continuous extension to x = 0.
- In Exercises 33–36, graph the function to see whether it appears to have a continuous extension to the given point *a*. If it does, use Trace and Zoom to find a good candidate for the extended function's value at *a*. If the function does not appear to have a continuous extension, can it be extended to be continuous from the right or left? If so, what do you think the extended function's value should be?

33.
$$f(x) = \frac{x-1}{x - \sqrt[4]{x}}, \quad a = 1$$
 34. $g(\theta) = \frac{5 \cos \theta}{4\theta - 2\pi}, \quad a = \pi/2$
35. $h(t) = (1 + |t|)^{1/t}, \quad a = 0$ **36.** $k(x) = \frac{x}{1 - 2^{|x|}}, \quad a = 0$

Roots

T 37. Let $f(x) = x^3 - x - 1$.

- **a.** Show that f has a zero between -1 and 2.
- **b.** Solve the equation f(x) = 0 graphically with an error of magnitude at most 10^{-8} .
- c. It can be shown that the exact value of the solution in part (b) is

$$\left(\frac{1}{2} + \frac{\sqrt{69}}{18}\right)^{1/3} + \left(\frac{1}{2} - \frac{\sqrt{69}}{18}\right)^{1/3}$$

Evaluate this exact answer and compare it with the value you found in part (b).

T 38. Let $f(\theta) = \theta^3 - 2\theta + 2$.

- **a.** Show that f has a zero between -2 and 0.
- **b.** Solve the equation $f(\theta) = 0$ graphically with an error of magnitude at most 10^{-4} .
- c. It can be shown that the exact value of the solution in part (b) is

$$\left(\sqrt{\frac{19}{27}} - 1\right)^{1/3} - \left(\sqrt{\frac{19}{27}} + 1\right)^{1/3}$$

Evaluate this exact answer and compare it with the value you found in part (b).