Chapter 2 Practice Exercises

Limits and Continuity

1. Graph the function

$$
f(x)=\left\{\begin{aligned}
1, & x \leq-1 \\
-x, & -1<x<0 \\
1, & x=0 \\
-x, & 0<x<1 \\
1, & x \geq 1
\end{aligned}\right.
$$

Then discuss, in detail, limits, one-sided limits, continuity, and one-sided continuity of f at $x=-1,0$, and 1 . Are any of the discontinuities removable? Explain.
2. Repeat the instructions of Exercise 1 for

$$
f(x)=\left\{\begin{aligned}
0, & x \leq-1 \\
1 / x, & 0<|x|<1 \\
0, & x=1 \\
1, & x>1
\end{aligned}\right.
$$

3. Suppose that $f(t)$ and $g(t)$ are defined for all t and that $\lim _{t \rightarrow t_{0}}$ $f(t)=-7$ and $\lim _{t \rightarrow t_{0}} g(t)=0$. Find the limit as $t \rightarrow t_{0}$ of the following functions.
a. $3 f(t)$
b. $(f(t))^{2}$
c. $f(t) \cdot g(t)$
d. $\frac{f(t)}{g(t)-7}$
e. $\cos (g(t))$
f. $|f(t)|$
g. $f(t)+g(t)$
h. $1 / f(t)$
4. Suppose that $f(x)$ and $g(x)$ are defined for all x and that $\lim _{x \rightarrow 0} f(x)=1 / 2$ and $\lim _{x \rightarrow 0} g(x)=\sqrt{2}$. Find the limits as $x \rightarrow 0$ of the following functions.
a. $-g(x)$
b. $g(x) \cdot f(x)$
c. $f(x)+g(x)$
d. $1 / f(x)$
e. $x+f(x)$
f. $\frac{f(x) \cdot \cos x}{x-1}$

In Exercises 5 and 6, find the value that $\lim _{x \rightarrow 0} g(x)$ must have if the given limit statements hold.
5. $\lim _{x \rightarrow 0}\left(\frac{4-g(x)}{x}\right)=1$
6. $\lim _{x \rightarrow-4}\left(x \lim _{x \rightarrow 0} g(x)\right)=2$
7. On what intervals are the following functions continuous?
a. $f(x)=x^{1 / 3}$
b. $g(x)=x^{3 / 4}$
c. $h(x)=x^{-2 / 3}$
d. $k(x)=x^{-1 / 6}$
8. On what intervals are the following functions continuous?
a. $f(x)=\tan x$
b. $g(x)=\csc x$
c. $h(x)=\frac{\cos x}{x-\pi}$
d. $k(x)=\frac{\sin x}{x}$

Finding Limits

In Exercises 9-16, find the limit or explain why it does not exist.
9. $\lim \frac{x^{2}-4 x+4}{x^{3}+5 x^{2}-14 x}$
a. as $x \rightarrow 0$
b. as $x \rightarrow 2$
10. $\lim \frac{x^{2}+x}{x^{5}+2 x^{4}+x^{3}}$
a. as $x \rightarrow 0$
b. as $x \rightarrow-1$
11. $\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{1-x}$
12. $\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x^{4}-a^{4}}$
13. $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$
14. $\lim _{x \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$
15. $\lim _{x \rightarrow 0} \frac{\frac{1}{2+x}-\frac{1}{2}}{x}$
16. $\lim _{x \rightarrow 0} \frac{(2+x)^{3}-8}{x}$

In Exercises 17-20, find the limit of $g(x)$ as x approaches the indicated value.
17. $\lim _{x \rightarrow 0^{+}}(4 g(x))^{1 / 3}=2$
18. $\lim _{x \rightarrow \sqrt{5}} \frac{1}{x+g(x)}=2$
19. $\lim _{x \rightarrow 1} \frac{3 x^{2}+1}{g(x)}=\infty$
20. $\lim _{x \rightarrow-2} \frac{5-x^{2}}{\sqrt{g(x)}}=0$

Limits at Infinity

Find the limits in Exercises 21-30.
21. $\lim _{x \rightarrow \infty} \frac{2 x+3}{5 x+7}$
22. $\lim _{x \rightarrow-\infty} \frac{2 x^{2}+3}{5 x^{2}+7}$
23. $\lim _{x \rightarrow-\infty} \frac{x^{2}-4 x+8}{3 x^{3}}$
24. $\lim _{x \rightarrow \infty} \frac{1}{x^{2}-7 x+1}$
25. $\lim _{x \rightarrow-\infty} \frac{x^{2}-7 x}{x+1}$
26. $\lim _{x \rightarrow \infty} \frac{x^{4}+x^{3}}{12 x^{3}+128}$
27. $\lim _{x \rightarrow \infty} \frac{\sin x}{\lfloor x\rfloor} \quad$ (If you have a grapher, try graphing the function
28. $\lim _{\theta \rightarrow \infty} \frac{\cos \theta-1}{\theta}$
(If you have a grapher, try graphing
$f(x)=x(\cos (1 / x)-1)$ near the origin to "see" the limit at infinity.)
29. $\lim _{x \rightarrow \infty} \frac{x+\sin x+2 \sqrt{x}}{x+\sin x}$
30. $\lim _{x \rightarrow \infty} \frac{x^{2 / 3}+x^{-1}}{x^{2 / 3}+\cos ^{2} x}$

Continuous Extension

31. Can $f(x)=x\left(x^{2}-1\right) /\left|x^{2}-1\right|$ be extended to be continuous at $x=1$ or -1 ? Give reasons for your answers. (Graph the func-tion-you will find the graph interesting.)
32. Explain why the function $f(x)=\sin (1 / x)$ has no continuous extension to $x=0$.

In Exercises 33-36, graph the function to see whether it appears to have a continuous extension to the given point a. If it does, use Trace and Zoom to find a good candidate for the extended function's value at a. If the function does not appear to have a continuous extension, can it be extended to be continuous from the right or left? If so, what do you think the extended function's value should be?
33. $f(x)=\frac{x-1}{x-\sqrt[4]{x}}, \quad a=1$
34. $g(\theta)=\frac{5 \cos \theta}{4 \theta-2 \pi}, \quad a=\pi / 2$
35. $h(t)=(1+|t|)^{1 / t}, \quad a=0$
36. $k(x)=\frac{x}{1-2^{|x|}}, \quad a=0$

Roots

37. Let $f(x)=x^{3}-x-1$.
a. Show that f has a zero between -1 and 2 .
b. Solve the equation $f(x)=0$ graphically with an error of magnitude at most 10^{-8}.
c. It can be shown that the exact value of the solution in part (b) is

$$
\left(\frac{1}{2}+\frac{\sqrt{69}}{18}\right)^{1 / 3}+\left(\frac{1}{2}-\frac{\sqrt{69}}{18}\right)^{1 / 3}
$$

Evaluate this exact answer and compare it with the value you found in part (b).
T 38. Let $f(\theta)=\theta^{3}-2 \theta+2$.
a. Show that f has a zero between -2 and 0 .
b. Solve the equation $f(\theta)=0$ graphically with an error of magnitude at most 10^{-4}.
c. It can be shown that the exact value of the solution in part (b) is

$$
\left(\sqrt{\frac{19}{27}}-1\right)^{1 / 3}-\left(\sqrt{\frac{19}{27}}+1\right)^{1 / 3}
$$

Evaluate this exact answer and compare it with the value you found in part (b).

