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Units, Dimensions and Measurement

1.1 Physieal Quantity

A quantity which can be measured and by which various physical happenings can be explained and expressed in form of laws
is called a physical quantity. For example length, mass, time, force egp

On the other hand various happenings in life eg. happiness, sorrow ef,. are not physical quantities because these can not be
measured.

Measurement is necessary to determine magnitude of a physical quantity, to compare two similar physical quantities and to
prove physical laws or equations.

A physical quantity is represented completely by its magnitude and unit. For example, 10 Mety, Means a length which is ten
times the unit of length 1 k5 Here 10 represents the numerical value of the given quantity and Megy, TePresents the unit of
quantity under consideration. Thus in expressing a physical quantity we choose a unit and then find that how many times that unit
is contained in the given physical quantity, /e

Physical quantity (Q) = Magnitude x Unit = nx y

Where, n represents the numerical value and ¢ represents the unit. Thus while expressing definite amount of physical
quantity, it is clear that as the unit(¢) changes, the magnitude(s) will also change but product ‘n;/ will remain same.

. _ . ) 1
ie ny = constant, or n,u; =n,u, = constant ; L

i.e. magnitude of a physical quantity and units are inversely proportional to each other .Larger the unit, smaller will be the
magnitude.

1.2 Types of Physical Quantity

(1) Ratie (numerieal value enly) : When a physical quantity is a ratio of two similar quantities, it has no unit.

&g Relative density = Density of object/Density of water at 4°C
Refractive index = Velocity of light in air/Velocity of light in medium

Strain = Change in dimension/Original dimension

Note: 0 Angle is exceptional physical quantity, which though is a ratio of two similar physical quantities (angle = arc / radius) but
still requires a unit (degrees or radians) to specify it along with its numerical value.
(2) Sealar (Magnitude enly) : These quantities do not have any direction eg. Length, time, work, energy efp

Magnitude of a physical quantity can be negative. In that case negative sign indicates that the numerical value of the quantity
under consideration is negative. It does not specify the direction.

Scalar quantities can be added or subtracted with the help of following ordinary laws of addition or subtraction.
(3) Veeter (magnitude and direction) : ég displacement, velocity, acceleration, force ef

Vector physical quantities can be added or subtracted according to vector laws of addition. These laws are different from laws
of ordinary addition.



‘[NO'[G : L There are certain physical quantities which behave neither as scalar nor as vector. For example, moment of inertia

is not a vector as by changing the sense of rotation its value is not changed. It is also not a scalar as it has
different values in different directions (/e about different axes). Such physical quantities are called Tensors.

1.3 Fundamental and Derived Quantities

d

() Fundamental quantities : Out of large number of physical quantities which exist in nature, there are only few quantities
which are independent of all other quantities and do not require the help of any other physical quantity for their definition, therefore
these are called absolute quantities. These quantities are also called fundamental or base quantities, as all other quantities are based
upon and can be expressed in terms of these quantities.

(2) Derived quantities : All other physical quantities can be derived by suitable multiplication or division of different powers
of fundamental quantities. These are therefore called derived quantities.

If length is defined as a fundamental quantity then area and volume are derived from length and are expressed in term of
length with power 2 and 3 over the term of length.

NOte: @ In mechanics Length, Mass and time are arbitrarily chosen as fundamental quantities. However this set of

fundamental quantities is not a unique choice. In fact any three quantities in mechanics can be termed as fundamental as all other
quantities in mechanics can be expressed in terms of these. eg if speed and time are taken as fundamental quantities, length will

become a derived quantity because then length will be expressed as Speed x Time. and if force and acceleration are taken as
fundamental quantities, then mass will be defined as Force / acceleration and will be termed as a derived quantity.

1.4 Fundamental and Derived Units

Normally each physical quantity requires a unit or standard for its specification so it appears that there must be as many
units as there are physical quantities. However, it is not so. It has been found that if in mg, we choose arbitrarily units of any
threq physical quantities we can express the units of all other physical quantities in mechar%é‘ in terms of these. Arbitrarily the
phy3|cal quantities Masg /e,, th and tjm, are choosen for this purpose. Sp any unj
a fundamental, absoluts or Bade unit Othe, t Of
For example light year or kpm, is a fundamenfﬁlllm},;ﬁ it is a unit of length while § 6‘?’7&@6% Ore derived units as these are
derived from units of time, mass and length respectlvei Can be time in ’nec

System ef units : A complete set of units, both fundamental an(f ggrmeqﬂem)r all kinds of physical quantities is ceﬁ @als*y@gy/g\ dof
units. The common systems are given below — of f"”O’am
en

Nta/
(1) CGS system : The system is also called Gaussian system of units. In it length, mass anﬂ”tim% ave been chosen as the
fundamental quantities and corresponding fundamental units are centimetre (cp), gram (g) and second (s) r@@{ﬂ@dt@@%

(2) MKS system : The system is also called Giorgi system. In this system also length, mass and time have been lf@f(én as
fundamental quantities, and the corresponding fundamental units are Meétre kilogram and second.

(3) FPS system : In this system foot, pound and second are used respectively for measurements of length, mass and time. In
this system force is a derived quantity with unit poundal.

(4) S. 1. system : It is known as International system of units, and is infact extended system of units applied to whole physics.
There are seven fundamental quantities in this system. These quantities and their units are given in the following table

Quantity Narne of Unit Symbel
Length metre m

Mass kilogram kg

Time second S

Electric Current ampere A
Temperature Kelvin

Amount of Substance mole moy




Luminous Intensity candela cq

Besides the above seven fundamental units two supplementary units are also defined —

Radian (raq) for plane angle and Steradian (sy) for solid angle.

Note: 0 Apart from fundamental and derived units we also use very frequently practical units. These may be fundamental

or derived units
eg- light year is a practical unit (fundamental) of distance while horse power is a practical unit (derived) of power.
QO Practical units may or may not belong to a system but can be expressed in any system of units
eg- L' mile =16 km=16x 10* m.
1.5 S.I. Prefixes .

In physics we have to deal from very small (m,'Cro) to very large (macro) magnitudes as one side we talk about the atom

while on the other side of universe, e g, the mass of an electron is 9.l x 107% kg while that of the sun is 2 x 10% kg To express
such large or small magnitudes simultaneously we use the following prefixes :

Power of 10 Prefix Symbel
10® exa £
10% peta P
102 tera T
10° giga @
10° mega M
10° kilo k
10 hecto h
10* deca 0
10™ deci q
107 centi c
103 mill m
10 micro u
10-° nano n
10 pico )
107 femto f
1078 atto a

1.6 Standards of Length, Mass and Time
(1) Length : Standard metre is defined in terms of wavelength of light and is called atomic standard of length.

The metre is the distance containing 1650763.73 wavelength in vacuum of the radiation corresponding to orange red light
emitted by an atom of krypton-86.

Now a days metre is defined as length of the path travelled by light in vacuum in 1/299,7792, 458 part of a second.

(2) Mass : The mass of a cylinder made of platinum-iridium alloy kept at International Bureau of Weights and Measures is
defined as | Ag.

On atomic scale, 1 4j, is equivalent to the mass of 5.0188 x 10% atoms of 4 (an isotope of carbon).

(3) Time : 1 Secop, is defined as the time interval of 9192631770 vibrations of radiation in Cs-133 atom. This radiation

corresponds to the transition between two hyperfine level of the ground state of Cs.133.



1.7 Practical Units
(1) Length :
() L fermi=1fp=10"m
(ii) L Xeray unit = Ly =107 m
(iii) 1 angstrom = 1A =10 1 = 10® ¢y = 107 myy, = 0L umy,

(iv) L micron = um=10"° m

(v) 1 astronomical unit =14, =1 49 x 10" ;=15 x 10" m ~10° km,

(vi) L Light year =1 = 9.46 x 10° m

(vii) 1 Pafsec = 1pe = 3.26 light year

(2) Mass :

(i) Chandra Shekhar unit : 1 Cgy, = 1.4 times the mass of sun = 2.8 x 10 kg

(i) Metric tonne : 1 Metric tonne = 1000 kg

(iii) Quintal : 1 Quintal = 100 kg

(iv) Atomic mass unit (am,) : am,, = 187 x 107" kg mass of proton or neutron is of the order of 1 ap,,

(3) Time :

(i) Year : It is the time taken by earth to complete ! revolution around the sun in its orbit.

(i) Lunar month : It is the time taken by moon to complete ! revolution around the earth in its orbit.
LLpy =273 days

(iii) Solar day : It is the time taken by earth to complete one rotation about its axis with respect to sun. Since this time varies
from day to day, average solar day is calculated by taking average of the duration of all the days in a year and this is called Average
Solar day.

1 Solar year = 365.25 average solar day

or average solar day = the part of solar year

365.25
(iv) Sedrial day : It is the time taken by earth to complete one rotation about its axis with respect to a distant star.
1 Solar year = 366.25 Sedrial day = 365.25 average solar day
Thus 1 Sedrial day is less than 1 solar day.
(v) Shake : It is an obsolete and practical unit of time.
L Shake = 1078 sgp
1.8 Dimensions of a Physical Quantity

=]

When a derived quantity is expressed in terms of fundamental quantities, it is written as a product of different powers of the

fundamental quantities. The powers to which fundamental quantities must be raised in order to express the given physical quantity
are called its dimensions.

To make it more clear, consider the physical quantity force

mass x velocity — mass x length/time
time time

Force = mass x acceleration = = mass x length x (time)? ... (i)

Thus, the dimensions of force are 1 in mass, L in length and — 2 in time.

Here the physical quantity that is expressed in terms of the base quantities is enclosed in square brackets to indicate that the
equation is among the dimensions and not among the magnitudes.

Thus equation (i) can be written as [force] = [Ay 7:2].



Such an expression for a physical quantity in terms of the fundamental quantities is called the dimensional equation. If we
consider only the R.H.S. of the equation, the expression is termed as dimensional formula.

Thus, dimensional formula for force is, [/|4[ T 7.
1.9 Impertant Dimensions of Complete Physies

Mechanies

S.N. Quantity Unit Dirnension
0 Velocity or speed (1) mys (MLT
) Acceleration () s MLr]
(3) Momentum () kg (MLT
(4) Impulse (/) Newyy, . OF Ag.rpe MLT
(5) Force (A /Ver‘On VT
(6) Pressure (P) paSCa/ T
(7 Kinetic energy (&) Joyfe IMETT
(8) Power (P) Wage OF Joujey, MLT]
9) Density (q) kg/fn3 MCET
(10) Angular displacement (6) Raciy, (rag) (MET]
(1 Angular velocity () /?a%n/sec (ML
(12) Angular acceleration () /?aol/anlsec2 MLeT4
(13) Moment of inertia (/) kg-m” MET]
(14) Torque (7) Newsy,, MET™]
(15) Angular momentum () Jow&spp"'wer MCT]
(16) Force constant or spring constant (&) /VeWmn"/m MET7
(17) Gravitational constant (G) Nenflkg" MEeT
(18) Intensity of gravitational field (&) Nig MLT4
(19) Gravitational potential (1) Duley, (MCT 7
(20) Surface tension (7) N OF Joyg /m2 (MLoT~7]
(20) Velocity gradient (1) Secop, d-l MEOT
(22) Coefficient of viscosity (77) ko/m. (MCT
(23) Stress Ny MLT7
(24) Strain No unit MET]
(25) Modulus of elasticity (£) Nt MLC'T3
(26) Poisson Ratio (o) No unit MLT]
(27) Time period (7) Secopy MO
(28) Frequency (1) H> MEOT]

Heat

S.N. Quantity Unit Dirmension

0) Temperature (7) Kelyp, M0

@ Heat (Q) louje miPT 7

(3) Specific Heat () Dujey, MET?07

(4 Thermal capacity Duley, ' MET-207]




S.N. Quantity Unit Dimension
(5) Latent heat (£) Jouje e WPET ]
(6) Gas constant (%) JOU/G/n:,,,' K MET20]
©) Boltzmann constant (&) JOU/e/kw IMET 071
(8) Coefficient of thermal conductivity (K) Joufe e MLT2071
9) Stefan's constant (o) Watt/mzu-/?“ [MLeT 2071
(10) Wien's constant (b) M@l‘er./( IMLT6]
(1) Planck's constant (/) doujp. M
(12) Coefficient of Linear Expansion (c) Ke/,,,-n_1 MLT°07]
(13) Mechanical eq. of Heat (J) Jouje e LT
(14) Vander wall's constant (g) ’Vemg;’fr e M7
(15) Vander wall's constant (4) m IMET
Eleetrieity
S.N. Quantity Unit Dimension
® Electric charge (q) Coujpy, W LTAT
) Electric current (/) A”?per;u MLTA4]
(3) Capacitance (C) Coy /OI;:A/ VLT A
4) Electric potential (1) boutes.. PMor ., MET 4"
o Coulomb 2 ¢ s
5) Permittivity of free space (&) Newton - meter 2 T4
(6) Dielectric constant (4) Unitless MET]
©) Resistance (%) Vor, . OT O IMET 4]
(8) Resistivity or Specific resistance (p) Ohmm’:ié‘fe MET?47
©) Coefficient of Self-induction ({) w enery MET 2477
o o o,
(10) Magnetic flux (4) Volto, OF Wepe, *“COnq IMET A
newton Joule
— met _ 2

(1) Magnetic induction () SRS TR SIS =y MmCT 41

volt — second r

meter 2 o Tesly

[A) Magnetic Intensity (/) Aia. . (ML TA]
(13) Magnetic Dipole Moment (/) Ampn. ~Meta, [MLTA4]

_Newton or Joule -

2

ampere 2 _ met

(14) Permeability of Free Space () Sl T = ML T?47]
Volt — second - Ohm —sec ond or henery

ampere — meter meter meter
(15) Surface charge density (o) Coulomb metre (ML TA4]
(16) Electric dipole moment (p) Coulomb — meter [MLTA]
(17) Conductance (G) (UR) ohm =1 ML PA]
(18) Conductivity (o) (Vp) ohm ~‘meter M T4
(19) Current density (J) Ampn. M4
(20) Intensity of electric field () Votts.  + Newm.. . MLT>4
(2) Rydberg constant () m MCT




110 Quantities Having Same Dimensiens

S.N. Dirmension Quantity
0] ML Frequency, angular frequency, angular velocity, velocity gradient and decay constant
2 IMETY Work, internal energy, potential energy, kinetic energy, torque, moment of force
3) M Pressure, stress, Young's modulus, bulk modulus, modulus of rigidity, energy density
(4) MET Momentum, impulse
() MLTA Acceleration due to gravity, gravitational field intensity
(6) MLT Thrust, force, weight, energy gradient
©) MET Angular momentum and Planck’s constant
(8) MEeTA Surface tension, Surface energy (energy per unit area)
) LT Strain, refractive index, relative density, angle, solid angle, distance gradient, relative permittivity (dielectric
constant), relative permeability etc.
(10) METY Latent heat and gravitational potential
1) IMET?01 Thermal capacity, gas constant, Boltzmann constant and entropy
1) WPOT \/ITg M\/% where /= length
g = acceleration due to gravity, m = mass, 4 = spring constant
13) MET] Lk JLC , Rowhere £ = inductance, R = resistance, C = capacitance
20y V7 2 9° 2 - L -
(14) 2T I Rt,?t Vit qv LI c CV < where /= current, ¢ = time, g = charge,
L = inductance, C = capacitance, R = resistance

L1t Applieatien of Dimensional Analysis

() Te find the unit of a physieal quantity in a given system ef units | Writing the definition or formula for the physical
quantity we find its dimensions. Now in the dimensional formula replacing A, £ and T by the fundamental units of the required
system we get the unit of physical quantity. However, sometimes to this unit we further assign a specific name, &g, Work = Force

x Displacement
So WA = I 771 < [ = [T
So its units in C.G.S. system will be g ¢’/ which is called érg While in MK.S. system will be 4g m2/52 which is called /oy,

S"?”Wﬁ gimbiem§ based on umnit finding

J2a

ns pq
Prgéjgm i. The equation (P + %) (V —b) = constant. The unfgsd (ﬁﬁadﬁ,,-t fi [MNR 1995; AFMC 1885]
(a) Dyne xcm?® (b) Dyne xcm* (c) Dyne /cm? (d) Dyne /cm?

So/u% . - (b) According to the principle of dimensional homogenity [P]= {\%}

= [a]=[P M*1=[ML'T? [I°] =[ML°T ]

or unitof = gm x cm® x sgs %= Dyne x cr;’

Propjem 2. If x =at+bt?, where x is the distance travelled by the body in k//olnet while t the time in seconds, then the units of
b are e [CBSE 1993]
@ kns () km.g © kmy o km.g

So/Ul‘/bn () From the principle of dimensional homogenity [x] = [bt?]= [b]= LLZ} - Unit of p= km/sz.

Prokjem 3. The unit of absolute permittivity is [EAMCET (Med.) i995: Pb. PMT 206i]
@) Faray - Metg, (0) Fargy ! Mets, ©) FRarag Mete,” (@) Fargy



C

So/llz‘/o,7 : (b) From the formula C =475,R . gy = IR

By substituting the unit of capacitance and radius : unit of ¢, = Fafao/ Metgy

Propjem 4. Unit of Stefan's constant is [MP PMT 1988]
(@ Jst (b) Im2sik™ (c) Jm2 (d) Js
. Q 4 Q - Joule 2.1y 4
Sole: - (b Stefan's formula — =oT" .. o= sUnitof o=————=JIm s K
Olitio ® At AtT* m? x secx K4
Prgéfgm 5. The unit of surface tension in SI system is

[MP PMT i884: AFMC 1986; CPMT 1985, 87: CBSE 1993; Karnataka CET (Engg/Med.) 1989; DCE 2600, 6]

2 2
(@) Dyne /cm (b) /Ver‘onlm (c) DJ/fie/ cm (d) /Verbn/m
So/ul‘lbn 2 (b) From the formula of surface tension T = TF

By substituting the S.I. units of force and length, we will get the unit of surface tension = /Ve“’lon/m

Prgéjgm 6. A suitable unit for gravitational constant is [MNR 1988]
(a) kg metre sec! (b) Newton metre * sec (c) Newton metre kg > (d) kg metre sec*
Gm,m Fr?
Solm. - (C As F=—212 o G=
Olttion © r2 m,;m,

Substituting the unit of above quantities unit of G = Newton metre 2kg 2.

Prgéjgm 7. The Sl unit of universal gas constant (A) is
[MP Board 1988; JIPMER 1993; AFMC 1996; MP PMT 1687, 94: CPMT 1984, 87; UPSEAT 1998]
@) Way K mol (b) /ve%n K=™mol ™ (c) oy K~mol ™ (d) ErgK™*mol ™
—1+-2 3 2+ -2
Solyg; :(c) Ideal gas equation PV =nRT .. [R] = [P V] = MLT " [1] = [MLTT “]
tion [nT] [mole [A] [mole ] x [K]

So the unit will be Joule K'mol .

(2) Te find dimensions of physieal eenstant or eoefficients : As dimensions of a physical quantity are unique, we write any
formula or equation incorporating the given constant and then by substituting the dimensional formulae of all other quantities, we
can find the dimensions of the required constant or coefficient.

2
(i) Gravitational constant : According to Newton's law of gravitation F = Gml_rznz or G = Fr
r m,m,
-2 2
Substituting the dimensions of all physical quantities [G] = IMLT L] [M7L3T 2]
[MIM]
(i) Plank constant : According to Planck E =hv or h = E
14
- : : : » [ML2T 2] P
Substituting the dimensions of all physical quantities [h] = T—’l] =[ML°T ]
4 4
(i) Coefficient of viscosity : According to Poiseuille’s formula dd_\t/: diul or = 7o

gql 1 8l@v /dt)

[MLT L]

ey e

Substituting the dimensions of all physical quantities [77] =



Bfgé@%g.

Solugi,

Brg@@;%vs.

Solugi,

Pf’g@fgm 10.

Stz )

Bfg@@% .

Pf’géfgm 12.

Soluty, @

X =3YZ? find dimension of Y in (MKSA5 sﬁmu d;; X and Z are the dimension of capacity and magnetic

S&rﬁﬂ# gm@b/@ms based on dimension finding

field respectively

(@ M3L2T4A

X =3YZ22 -

Dimensions of

@ [LT7]

We know that velocity of light C =

So { 1
Hoéo

- [Yl=

[X] _

(b) ML

[M 71L72T4A2]

[2%]

Hoéo

[MT -2 A—1]2

() [L'T]

}:[LT TP = LT

1 .
Jroso

1

Hoéo

en5/0n f//]o’/

(©) M—SL%T“A“

=[M3L?Te A,

, Where symbols have their usual meaning, are

© [L7°T?]

=C?2

[MP PMT 2663]

(d) M3L2T8A%

@ [L*T7]

[AIEEE 26603]

If £, cand R denote the inductance, capacitance and resistance respectively, the dimensional formula for C2LR is

() [ML2T 119

2io1- | ~2,2 R 2( R
[C?LR]= {c L ﬂ - {(LC) [IH

and we know that frequency of LC circuits is given by f = Zi

(b) MOLOT31°]

(© [ML2To1%]

1
T 4/ LC

(d [MOLOT219]

i, the dimension of LC is equal to [T?]

and [%} gives the time constant of L —R circuit so the dimension of % is equal to [73.

By substituting the above dimensions in the given formula {(LC){%H =[T2PT 1= .

A force Fis given by F = at +bt?, where t is time. What are the dimensions of gand 4

(@ MLT 2 and ML2T™* (b) MLT 2 and MLT ~* ()

From the principle of dimensional homogenity [F]=[at] .. [a]= {;} :{

Similarly [F]=[bt?] .. [b] = Liz} _ [

MLT

T2

} =[MLT 1.

The position of a particle at time ¢is given by the relation X t) £ (V—Oj -
[0/

dimensions of v, and « are respectively

() MOLT-

Yand T

() MOL*T? and T

() MOLT-

MLT % and MLT?®

MLT

—at

Land LT 2

} =[MLT ]

[CBSE 1985]

From the principle of dimensional homogeneity [« t]= dimensionless .. [a] = { } T

Similarly [x]=

Vo]
[]

“ Vol =[x]le] =

[LOT1=077

[BHU 1998: AFMC 206i]
(d) MLT ™ and MLT?

), where v, is a constant and ¢« > 0 . The

(d M°L*Tand T



Pf’gé[gm 13.

SO/UI‘/'O n 1 (0)

Pf’gé[gm 14.

Pf’géfgm 16.

SO/UI‘/'O n - ()

Brg%% 16.

Pf’g@fgm 17.

Bfgé@% 18.

The dimensions of physical quantity X in the equation Force =

X is given by [DCE i9983]
Density

@ MILAT2 (b) M2L2T! © M2L2T2 @ MILPT
[X = [Force] x [Density] = [MLT ?]x[ML] = [M2L7*T %]

N, -
X, =X

Number of particles is given by n = -D crossing a unit area perpendicular to X axis in unit time, where n, and

n, are number of particles per unit volume for the value of x meant to x, and x;. Find dimensions of D called as

diffusion constant [CPMT i978]
(@ MOLT? () moL2r* () MOoLT3 (d moL2Tt
H 0010
(n) = Number of particle passing from unit area in unit time = No. of particle = M LT, LT
Axt [L? [T]
[n;1=[n,] = No. of particle in unit volume = [L™®]
2+-1
Now from the given formula [D] = [(lixp =] (LT~ [H [L2T ).

[, —n,] [L°]

£ m, /and G denote energy, mass, angular momentum and gravitational constant respectively, then the dimension of
e
m® G2
(a) Angle (b) Length (c) Mass (d) Time
[E]= energy = [ML?T 2], [m] = mass = [Ml, [/] = Angular momentum = [ML?T 7]

are [ANMS 1985]

[G] = Gravitational constant = [M LT 2]

2 242 24+ -192
Now substituting dimensions of above quantities in E5| = [MLST ]x[l\/lls_ T2 2] = [MOL°T]
m5GZ  [MO]x[M L°T 7]

e, the quantity should be angle.

The equation of a wave is given by Y = A sin w[i - kj where @ is the angular velocity and v is the linear velocity. The

v
dimension of kis [MP PMT i993]
@ LT O T © T @ T2
According to principle of dimensional homogeneity [k] = {5} = [LTL 1} =[T].

v Z

The potential energy of a particle varies with distance x from a fixed origin as U = where 4 and B are

X’ +B

dimensional constants then dimensional formula for 45 is
(a) ML7/2 T—Z (b) MLll Z/T—Z (C) M 2L9/2T -2 (d) ML13 2/-|- -3
From the dimensional homogeneity [x?]=[B] .. [4] = [(]

[Ax T 2r2y [ALL T -2
” = " = . = T7
As well as [U] 1+ 5] = [ML2T 2] 12 [A]=[ML ]

Now [AB]=[ML" #T 2]x[L?] =[ML** 274
The dimensions of % goE2 (&, = permittivity of free space ; £ = electric field ) is [IfT-JEE 1998]

@ MmLT ®) 2T © M @ MLt



1 »  Energy ML2T 2 4
. (c Energy density = —g,E“ = = =[ML™T
So/mr,o,7 © gy density = = £ Volume { 3 [ ]
Prgéjgm 19. You may not know integration. But using dimensional analysis you can check on some results. In the integral
J % =a" sinl(i - 1jthe value of 7 is
dax — x°) a
1
(@ 1 (b) -1 © 0 @

So/uz‘/'o,7 (0 Let x = length .. [X]=[L] and [dx]=[L]

By principle of dimensional homogeneity {i}zdimensionless - [a]l=[x]=[L]
a

[L]

By substituting dimension of each quantity in both sides: W = [L"] -~ n=0

2y2

where A= magnetic induction, £ length and m = mass. The dimension of P is

&g@@% 20. A physical quantity P = B

() MLT® (b) ML2T 2 () M2L2T™I (d) MLT 2172
. i [Fl _IMLT ] _ 721
Solp:. - (0) F= B8y .. Dimension of [B] = = =[MT ~“177]
Utio, ‘ I [
212 -21-172 2
Now dimension of [P] = BT _IMT 711" x[L7] =[ML?T 4172]
[M]

Prgéjgm 21 The equation of the stationary wave is J= 2asin (?) cos(ZTﬂxj , which of the following statements is wrong
(@) The unit of ct is same as that of 4 (b) The unit of x is same as that of 1
(c) The unit of 27c /A is same as that of 2zx /At (d) The unit of ¢/A is same as that of x /A

27t 27X . . . 27ct 27X 0,0+0
.1 (d Here, —— as well as —— are dimensionless (angle) i@ | — |=|— =M LT

Solutig, * (@) p 2 (g)e[ﬂ}{ﬂ}

So (i) unit of ¢ ¢is same as that of A (ii) unit of x is same as that of 4 (iii) [277[0} = {i—ﬂﬂ

and (iv) % is unit less. It is not the case with %

(3) To eonvert a physieal quantity from one system to the other : The measure of a physical quantity is ny, = constant
If a physical quantity x has dimensional formula [A/£°T9] and if (derived) units of that physical quantity in two systems are
[MALATS] and [M2L5TS] respectively and »n and n, be the numerical values in the two systems respectively, then

nl[ul] = nz[uz]

= nl[MquTlc] = nz[MngTzc]

M a L b T c
= nenf |27
2 2 2

where Ay, £, and 7, are fundamental units of mass, length and time in the first (known) system and A, [, and T, are
fundamental units of mass, length and time in the second (unknown) system. Thus knowing the values of fundamental units in two
systems and numerical value in one system, the numerical value in other system may be evaluated.

EXa’hp/e : (1) conversion of Ner‘on into DJ/ﬂe'



The Newton is the S.I. unit of force and has dimensional formula [47; 7:2].
S0 1N=1kg.p, Sec

a b c 1 1 i) 3 1 2 1 2
: M L T
By using n, =n{—1} {—1} {—1} :1{k—g} [ﬂ} [ﬁ} _q/107gm | ) 10%cm [ﬁ} _105
M, | |L || T, gm | [cm | | sec gm cm sec
. - 1N°
IN=10 Dyne
(2) Conversion of gravitational constant (G) from C.G.S. to M.K.S. system

The value of Gin C.G.S. system is 6.67 x 10°® C.G.S. units while its dimensional formula is [A/'(* T2
So G=6.67 x 10° cnilg &

a b c 3 -2
oens ][] o {gT [
2 2 2 g m sec
-1 3 -2
- @ 10| " [ ull Hﬁ} = & x10™
10°gm 10°cm ] | sec

Sﬁrﬁﬁk gimb/ems based on conversion

G= 6.67 x 10" MKS. units

Pfg@jgm 22, A physical quantity is measured and its value is fgéwsgbbe nu where n = numerical value and u = unit.
Then which of the following relations is true ’7'/@r5,0,7 [RPET 2603]
@ nou? ®) neu © neu @ nol
u
S - (d) We know P =nu =constant .. n,u; =n,u, or noc1
Olutip, B o T u’
Pfg@jgm 23. In C.G.S. system the magnitude of the force is 100 dJ/n In another system where the fundamental physical quantities are
k’/ogra m@tre and Miny, o the magnitude of the force |s [EAMCET 266i]
@ o (b) 036 (c) 36 (d) 36

SOlutiy,

1 (c) n,=100, M; =g,L; =cm, T, =sec and M, =kg, L, =meter , T, =minute, x =1, y=1, z=-2

By substituting these values in the following conversion formula n, = nl{ M, } { L } {Tl }

M L, ||T
gm em T sec 17
n, =100
2 {kg } {meter } {minute }

1 1 -2
n, =100 2™ [ em M S } -3.6
103gm | [ 10%cm | [ 60 sec

Pfg@]gm 24. The temperature of a body on Kelvin scale is found to be X 4. When it is measured by a Fahrenheit thermometer, it is found
to be X ~ Then Xis [UPSEAT 206]
(a) 30L.25 (b) 574.25 (c) 313 (d) 40

K-273 F-32
. Relation bet tigrade and Fahrenheit =

So/Ul‘/o,, (c) elation between centigrade and Fahrenhei 5
According to problem X _5273 _X ;32 s X =313,

Prgéjgm 25. Which relation is wrong [RPMT 1897]
@ ! c‘?/Or/e = 418 Joyy, s (b) 14-=10"m

(©) 1 Moy =16 X 10 oy (@) 1 Moy =07 Dy



m@@% 26.

SO/UI‘/'O n 1 (0)

Pfgéjgm 27.

Soluty, @

m@@% 28.

Stz )

Pfg@jgm 29.

- 5
Because 1 /Ver‘on = 10 DJ’ﬁe‘
To determine the Young's modulus of a wire, the formula is Y = ;ﬁ where [= length, A= area of cross- section of the

wire, AL = Change in length of the wire when stretched with a force £ The conversion factor to change it from CGS to
MKS system is [MP PET 1983]

@ 1 (b) 10 © 0l @ 001
We know that the dimension of young's modulus is [ML™T 7]

C.G.S. unit : gy, cm~* sec ™ and MK.S. unit : kg ™ seg” .

M, L T T m T cm ] [sec]?
By using the conversion formula: n, = n{M—l} L—l} {T—l} = {i—} [ t } {—}
) ) ) g | [ meter sec

1 1 )
.. Conversion factor Mg _|_9gm { cm } [ﬁ} = i = 10
ny [103gm | [102%cm sec 10

Conversion of 1 MW power on a new system having basic units of mass, length and time as 104y, loj and ! m’hUt
respectively is ¢

() 2.16 x 10 unit (b) 1.26 x10 2 unit (©) 2.16 x 10 unit (d) 2x10 unit
[P]=[ML*T ]

X y z 1 2 -3
Using the relation n, :nl{ﬂ} {i} {L} =1x10° { 1kg } { 1m } { 15_ } [As 1MW =10°W ]
M, L, T, 10kg | |1dm 1 min

2 -3
10d
_106 1kg m 1sec — 216 x1012 Uniy
10kg || 1dm 60sec
. . . . a? =
In two systems of relations among velocity, acceleration and force are respectively v, =7v1, a,=afy and F, = —2 If
(04

o and g are constants then relations among mass, length and time in two systems are

2 3 3
a a’T, 1

a a a
a) My=—M;,L,=—L,T,= b) My=——M, L, =2 L,,T,=T, =
()2ﬁ12ﬂ212 B ()2a2ﬂ212ﬂ312 1ﬂ2
3 2 2 3
a a a a a a
© My=—73M,L=—L,T,=—T, (d My=—M,L=—L,T,=—5T,
B B B B B’ B’
062 1 -1 a2 .
Vo =V17 = [L, T 1=[L Ty ]7 ------ (i)
a, =aof = [LT,°1=[LTlep (i)
_h 2q_ g, L
and F, = = [M,L, T, 1=[M LTy “Ix— .. (iii)
ap ap
M, M,

Dividing equation (iii) by equation (ii) we get M, = @h)ap = 257
ap)a, o

3
a

Squaring equation (i) and dividing by equation (i) we get L, =L, —

Dividing equation (i) by equation (ii) we get T, =T, iz
B

If the present units of length, time and mass (m, s, kg) are changed to 100, 100s, and % kg then



(a) The new unit of velocity is increased 10 times (b) The new unit of force is decreased ﬁ times

(c) The new unit of energy is increased 10 times (d) The new unit of pressure is increased 1000 times
100 m m
Sofe - (D Unit of velocity = ; in new system = =—— (same
Olutioy, (b) W = Misec y 100 sec  sec (same)
Unit of force = kg xm ; in new system = ikg x 100m = 1 kgxm
sec ? 10 100 sec x100 sec 1000 gec?
2 2
Unit of energy = kg xm ; in new system = ikg XM L kg xm
sec 2 10 100 secx100sec 10 gec?
Unit of pressure = I(79; in new system = ikg X Lm X ! =10~ _ kg
m x sec 10 100 100 sec x 100 sec m x sec 2
Pfgé]gm 30. Suppose we employ a system in which the unit of mass equals 100 4g, the unit of length equals | 4, and the unit of time 100
sand call the unit of energy e/Uoj (/OU/e written in reverse order), then
(@) 1 elyg;=10° joy (b) 1 elyg; = 10 joyg (©) ! elug;= 10" foye (A) Loy = 10° el

Solutiy, @ [E]=[ML?T ]
L ey = [100kg] Tkm]? x[100 sec] 2 =100kg x10°m? x10 * sec® =10% kgm? xsec > =10* Joule
Efgé@% iR If 1gm cmg = x N then number x is equivalent to

(a) 1x107? (b) 3x1072 (c) 6x107* (d) 1x10°°

SO/Utlon . (d) gm-cCcm S_l =10 -3 kg %10 72m % 571 -10 -5 kg <M x 571 : 10_5 /VS

(4) Te eheek the dimensional eorrectness of a given physieal relatien : This is based on the ‘p’/ﬁc/
According to this principle the dimensions of each term on both sides of an equation must be the same. e of

If X = A+(BC)? ++/DEF,

then according to principle of homogeneity [X] = [4] = [(8¢0)*] = [VDEF]

If the dimensions of each term on both sides are same, the equation is dimensionally correct, otherwise not. A dimensionally
correct equation may or may not be physically correct.

(0)

() F=mv? /r?
E)(amp/e 0
By substituting dimension of the physical quantities in the above relation —

[MLT 2] =[M][LT 7% /[L]?

ie [MLT ] =[MT 2]
As in the above equation dimensions of both sides are not same; this formula is not correct dimensionally, so can never be
physically.
(2 s=ut— )&y
By substituting dimension of the physical quantities in the above relation —
[ =177 - LT
le [ =[d- 14

As in the above equation dimensions of each term on both sides are same, so this equation is dimensionally correct.
However, from equations of motion we know that s = ut + Y@ {

5577%% gmb/ems based on formulae checking

J2a

Prgéjgm 32. From the dimensional consideration, which o?’ﬂﬁaj@”ogy)ir}g equation is correct [CPMT 1983]
O,
an/ae Chﬁnl‘:




Soluty, - @

Pf’géfgm 33.

Pfg@jgm 34.

Soluty, (@

Pf’g@jgm 35.

SO/UI‘/'O n 1 (a)

IR3 GM [GM /R2
(a) T=2n m (b) T=2rx ? (C) T=2r ? (d) T=2n W
IR3 /R3 R
= — =2 =2 — A =
T=2x oM P R ps g [As Gy = gF]

Now by substituting the dimension of each quantity in both sides.
2/1
L
[T]= [ — } =[]
LT

LHS. = RHS. /g the above formula is Correct.

A highly rigid cubical block 4 of small mass Ay and side [ is fixed rigidly onto another cubical block B of the same
dimensions and of low modulus of rigidity 7 such that the lower face of A completely covers the upper face of 8 The lower

face of B is rigidly held on a horizontal surface. A small force £is applied perpendicular to one of the side faces of 4. After
the force is withdrawn block 4 executes small oscillations. The time period of which is given by

/Mr] / L ’ML M
@ 27 o~ (b) 2z |V|—77 () 2z T (d) Zﬂ\/n:L

Given m = mass = [, 1 = coefficient of rigidity = [ML™>T 2], £ = length = [{]
By substituting the dimension of these quantity we can check the accuracy of the given formulae
2/1 2/1
M M
[T]= zﬂ[uJ = {ﬁ} =[7
[7 [1] ML'T 2L
LHS. =RH.S. /g the above formula is Correct.

A small steel ball of radius r is allowed to fall under gravity through a column of a viscous liquid of coefficient of viscosity.
After some time the velocity of the ball attains a constant value known as terminal velocity v,. The terminal velocity
depends on (i) the mass of the ball. (ii) 7 (i) »and (iv) acceleration due to gravity g which of the following relations is

dimensionally correct [CPMT i992; CBSE 1992; NCERT i983; MP PMT 206i]
m r mgr
@ vpood (b) vy oc L ©) vy o prmg @ vpoc
nr mg n

Given vy = terminal velocity = [LT 11, m = Mass = [Ml, ¢ = Acceleration due to gravity = [LT ]
r =Radius = [L], n = Coefficient of viscosity = [r]
By substituting the dimension of each quantity we can check the accuracy of given formula v o mg
nr
M LT ]
[MLT™ 1]

LHS. = RH.S. /g the above formula is Correct.

o [LT Y= = [LT ]

A dimensionally consistent relation for the volume |/ of a liquid of coefficient of viscosity 7 flowing per second through a
tube of radius r and length /and having a pressure difference p across its end, is

4
7pr znl 8pnl wn
@ V= (b) V=—-r © V=—p¥ (d) V=—oc
87l 8pr* ar’ 8ir?
Given |/= Rate of flow - Volume _ [L3T 1], P = Pressure = [ML™ T 2], r= Radius = [{]
sec

n = Coefficient of viscosity = [ML™T %], /= Length = [{]

P rt

By substituting the dimension of each quantity we can check the accuracy of the formula V = o
n




[MLT™ [1] _
ML T [H

LHS. =RH.S. /g the above formula is Correct.

. [LSTfl] — [LST—l]

Prgéjgm 36. With the usual notations, the following equation S, =u + % axt- )Is

(a) Only numerically correct (b) Only dimensionally correct
(c) Both numerically and dimensionally correct (d) Neither numerically nor dimensionally correct

So/Ul‘/b . () Given S = distance travelled by the body in " sgp= [LT 1, a = Acceleration = [LT 2],

v = velocity = [LT ], t=time = [ 7]

By substituting the dimension of each quantity we can check the accuracy of the formula
1
S, :u+5a - )1

ST =T LT M) = LT = [LT Y+ LT

Since the dimension of each terms are equal therefore this equation is dimensionally correct. And after deriving this equation
from Kinematics we can also proof that this equation is correct numerically also.

Prgéjgm 37. If velocity v, acceleration 4 and force < are chosen as fundamental quantities, then the dimensional formula of angular
momentum in terms of v, A and F would be

@ FAly (b) Fv A~ () FvZA™ (d Fxvia?t
So/UI‘/'o,7 2 (b) Given, 1= velocity = [LT ], 4 = Acceleration = [LT %], £ = force = [MLT 2]
By substituting, the dimension of each quantity we can check the accuracy of the formula
[Angular momentum] = Fv3A~2
[ML?T ] = [MLT 2 [OT *°[LT 2172
= [MLT ]
LHS. = RH.S. /g the above formula is Correct.

Prgéjgm 38. The largest mass () that can be moved by a flowing river depends on velocity (1), density (o) of river water and
acceleration due to gravity (g). The correct relation is
2,,4 6 4 6
(@ mo (b) mec © mo @ moc
g g g g

So/Ul‘/bn S (d) Given, /= mass = [, v= velocity = [LT 1, p = density = [ML™®], g = acceleration due to gravity = [£ 7]
By substituting, the dimension of each quantity we can check the accuracy of the formula

m=K ’Og\ge
_[MLPLT P
=[M]= [LT 72]3
=M

LHS. = RH.S. /g the above formula is Correct.

(5) As a researeh tool te derive new relatiens : If one knows the dependency of a physical quantity on other quantities and if
the dependency is of the product type, then using the method of dimensional analysis, relation between the quantities can be
derived.

Sy, (i) Time period of a simple pendulum.



Let time period of a simple pendulum is a function of mass of the bob (), effective length (J), acceleration due to gravity
(9) then assuming the function to be product of power function of m, /and g

ie, T=Km*I”g*; where k= dimensionless constant

If the above relation is dimensionally correct then by substituting the dimensions of quantities —
[ = M [ LT

or [MLT] = M1 T™]

Equating the exponents of similar quantities x=0, y= /2 and 2= - 1/2

So the required physical relation becomes T = K \ﬁ
g

The value of dimensionless constant is found (27 ) through experiments so T = 2z \ﬁ
g

(ii) Stoke’s law : When a small sphere moves at low speed through a fluid, the viscous force & opposing the motion, is found
experimentally to depend on the radius r, the velocity of the sphere and the viscosity # of the fluid.

So F=F(n rv)

If the function is product of power functions of 7, rand 1, F = Kn*r’v?; where Kis dimensionless constant.
If the above relation is dimensionally correct [MLT ] =[ML™T *]*[L][LT *T?

or [MLT 2] =[M*L*V*2T 7]

Equating the exponents of similar quantities x=1, —x+y+2=1 and —x—2=-2

Solving these for x, yand 2 we get x= y=2=1

So eq’ (i) becomes = knry

On experimental grounds, K= 67, S0 F=67znry

This is the famous Stoke’s law.

&’ﬁﬂ% gmb/@m based on formulae derivation

/)

Prgéjgm 39. If the velocity of light (c), gravitational con’gté?@se(ﬁanand Planck's constant (4) are chosen as fundamental units, then the
dimensions of mass in new system is fo’mu/ae o [UPSEAT 2062]
€rf1/at:
@ c'%G % /2 () ¢ '%G %2 © ¢ /K‘gloﬁzh 2 d ¢ %G % /2

So/Ul‘/bni(C) Let m oc ¢*GYh* or m = Kc*GYh?
By substituting the dimension of each quantity in both sides
[M 1 LOT 0] — K[LT —l]x [M -1 L3-|- —Z]y [MLZT —1]2 — [M -y+z Lx+3y+22-|-—x—2y—2]

By equating the power of Ay, Land Tin both sides: -y+z=1, x+3y+2z2=0, -x-2y-z=0

By solving above three equations x= /24, y=- 2/8nd z= 2/.1
 moc /ZG— /Zh /2

Prgéjgm 40. If the time period (7) of vibration of a liquid drop depends on surface tension (), radius (r) of the drop and density (p) of
the liquid, then the expression of T is [AMU (Med.) 2606]

(@ T=Kyprd/s (b) T=Kyp '23/s (©) T=Kyprd/s'? (d) None of these
Let T oc S*rYp? or T= KS*rYp?
By substituting the dimension of each quantity in both sides

[M OLOTl] =K [MT —Z]X[L]y[ML—S]z — [M X+2 Ly—SZT—Zx]

Soluty, @



Pfg@fgm 4.

Pf’géfgm 42.

Pfg@jgm 43.

Pfg@jgm 44.

By equating the power of Ay, Land Tin bothsides x+z=0,y-3z2=0, -2x =1
By solving above three equations ... x=— /4, y=3/2,z2= /2

3
So the time period can be givenas, T = K S~ %t 23 2L wa% ,

If A represents radiation pressure, C represents speed of light and Q represents radiation energy striking a unit area per
second, then non-zero integers x, ), and zsuch that P*QYC* is dimensionless, are

[AFMC i98i; CBSE 1992; CPMT 1981, 82; MP PMT 1992]
@ x=,t=,2=-1 b) x=,¢4=-,2=1 () x=-,¥= ,1=1 d x=,¢=,1=1
[P*QYC?]=MOLoT?®
By substituting the dimension of each quantity in the given expression
[ML7MT 2P [MT P PYILT 712 = MY LT 2321 = M OLOT0
by equating the power of A7 L and Tin both sides: x +y =0, -x+z=0 and -2x -3y-2=0
by solvingwe get x = 4 =—,1=1.
The volume |/ of water passing through a point of a uniform tube during ¢ seconds is related to the cross-sectional area 4 of the
tube and velocity ¢ of water by the relation V o A%u”t”  which one of the following will be true

@ a=p=y (b) a=p=y © a=p=y @ azp=y
Writing dimensions of both sides [L®]=[L*]“[LT "1 [T) = [L*T°] = [L***F T77F]

By comparing powers of both sides 2o+ =3 and y - =0
Which give g =y and a:% A-Bieaxpf=y.

If velocity (1), force (A and energy (£) are taken as fundamental units, then dimensional formula for mass will be
() VF°E (b) VOFE? () VF2E° (d VZF°E

Let M =V2FPE°

Putting dimensions of each quantities in both side [M]=[LT "*]2[MLT “2]°[ML?T 2]

Equating powers of dimensions. We have b + c= ,la+b+2c=0 and -a—-2b-2c=0

Solving these equations, a = — ,2p=0and ¢=1

So M =[V?FYE]

Given that the amplitude A of scattered light is :

(i) Directly proportional to the amplitude (4,) of incident light.

(ii) Directly proportional to the volume (1) of the scattering particle

(iii) Inversely proportional to the distance (r) from the scattered particle

(iv) Depend upon the wavelength (4 ) of the scattered light. then:
1 1 1 1
@) AocI (b) Aoc? (c) Aoc? (d) Aoc/1—4

X
Let A = JAVA

By substituting the dimension of each quantity in both sides

[L.[1° 1]
[L]
LI =[] = 3+ x=1or x =2

=[L]=

Ao A7



112 Limitations of Dimensional Analysis
Although dimensional analysis is very useful it cannot lead us too far as,

(D) If dimensions are given, physical quantity may not be unique as many physical quantities have same dimensions. For
example if the dimensional formula of a physical quantity is [ML?T ~*]it may be work or energy or torque.

(2) Numerical constant having no dimensions [A] such as (1/2), 1 or 2z ef, cannot be deduced by the methods of
dimensions.

(3) The method of dimensions can not be used to derive relations other than product of power functions. For example,

s= td )2t  or y =asinot
cannot be derived by using this theory (try if you can). However, the dimensional correctness of these can be checked.

(4) The method of dimensions cannot be applied to derive formula if in mechanics a physical quantity depends on more
than 3 physical quantities as then there will be less number (= 3) of equations than the unknowns (>3). However still we can check

correctness of the given equation dimensionally. For example T = 27./1/mgl can not be derived by theory of dimensions but its
dimensional correctness can be checked.
(5) Even if a physical quantity depends on 3 physical quantities, out of which two have same dimensions, the formula cannot

be derived by theory of dimensions, &g formula for the frequency of a tuning fork f =(d/L?)v cannot be derived by theory of
dimensions but can be checked.

113 Signifieant Figures

Significant figures in the measured value of a physical quantity tell the number of digits in which we have confidence. Larger
the number of significant figures obtained in a measurement, greater is the accuracy of the measurement. The reverse is also true.

The following rules are observed in counting the number of significant figures in a given measured quantity.
() All non-zero digits are significant.
EXa’hp/e © 42.3 has three significant.fig.u.res. |
243.4 has four significant figures.
24.123 has five significant figures.
(2) A zero becomes significant figure if it appears between to non-zero digits.
EXa’hp/e : 5.03 has three significant.fig.u.res. |
5.604 has four significant figures.
4.004 has four significant figures.
(3) Leading zeros or the zeros placed to the left of the number are never significant.
EXa’hp/e : 0.543 has three significar.lt f.iqures. |
0.045 has two significant figures.
0.006 has one significant figures.
(4) Trailing zeros or the zeros placed to the right of the number are significant.
EXa’hp/e © 4.330 has four signifif:ant .fig.u.res. |
433.00 has five significant figures.
343.000 has six significant figures.
(5) In exponential notation, the numerical portion gives the number of significant figures.

: 132 x 107 has three significant figures.
E)(amp/e * . :
132 x 10* has three significant figures.
114 Reunding Off




While rounding off measurements, we use the following rules by convention:
(1) If the digit to be dropped is less than 5, then the preceding digit is left unchanged.

E)@m e : X = .82 isrounded off to 7.8, again x = 3.94 is rounded off to 3.9.
(2) If the digit to be dropped is more than 5, then the preceding digit is raised by one.
EXa’hp/e © ¥ = 6.87 is rounded off to 6.9, again x 205 is rounded off to 12.8.
(3) If the digit to be dropped is 5 followed by digits other than zero, then the preceding digit is raised by one.
E)(amp/ : x=16.35 is rounded off to 16.4, again x = 6.758 is rounded off to 6.8.
(4) I digit to be dropped is 5 or 5 followed by zeros, then preceding digit is left unchanged, if it is even.
EXa’hp/e : x=3.250 becomes 3.2 on rounding off, again x = 12.650 becomes 12.6 on rounding off.
(5) If digit to be dropped is 5 or 5 followed by zeros, then the preceding digit is raised by one, if it is odd.
EXa’hp/e : x=3.750 is rounded off to 3.8, again x = 16.150 is rounded off to 16.2.

115 Significant Figures in Caleulation

=]

In most of the experiments, the observations of various measurements are to be combined mathematically, /e, added,
subtracted, multiplied or divided as to achieve the final result. Since, all the observations in measurements do not have the same
precision, it is natural that the final result cannot be more precise than the least precise measurement. The following two rules
should be followed to obtain the proper number of significant figures in any calculation.

(1) The result of an addition or subtraction in the number having different precisions should be reported to the same
number of decimal places as are present in the number having the least number of decimal places. The rule is illustrated by the
following examples :

() 333 < (has only one decimal place)
3
+0.313
36.723 < (answer should be reported to one decimal place)
Answer = 36.7
(i) 31421
0.241
+0.09 < (has 2 decimal places)
34731 <« (answer should be reported to 2 decimal places)
Answer = 3.47
(iii) 62.83! < (has 3 decimal places)
— 245492

38.2818 <« (answer should be reported to 3 decimal places after rounding off)
Answer = 38.282

(2) The answer to a multiplication or division is rounded off to the same number of significant figures as is possessed by the
least precise term used in the calculation. The rule is illustrated by the following examples :

(i) 142.06
x 0.23 <« (two significant figures)
32.6738 <« (answer should have two significant figures)
Answer = 33
(i) 51028

x 131 < (three significant figures)



66.84668

Answer = 66.8
(iii) '—gD = 2112676
4.26
Answer = 0.21
116 Order of Magnitude

D

In scientific notation the numbers are expressed as, Number = M x10*. Where M is a number lies between ! and 10 and x

is integer. Order of magnitude of quantity is the power of 10 required to represent the quantity. For determining this power, the
value of the quantity has to be rounded off. While rounding off, we ignore the last digit which is less than 5. If the last digit is 5 or
more than five, the preceding digit is increased by one. For example,

1) Speed of light in vacuum = 3 x10%ms
(@) Sp g

(2) Mass of electron =

Pf’g@jgm 45.

Soluty, - (©)

&g@@% 46.

O/Utl on 1 (a)

Probjsgy 47.

Soluty, - @

Pf’g@[gm 48.
Soluty, - (©)

Pf’g@jgm 49.

&g@@% 56.

Pf’gé[gm 5i.

-1

~10°%m /s (ignoring 3 < 5)
1910 *'kg ~10 *kg (as 91> 5).

S@rﬁﬁ# ﬁr@[b/@m§ based on significant figures

Each side a cube is measured to be 7.203 m. ”?ﬁ@a@b&me of the cube up to appropriate significant figures is
(a) 373714 (b) 37371 " SO, /3,79@ (A 373
Volume=a® = .0BR3)® =373.715m?

In significant figures volume of cube will be 373 7m?® because its side has four significant figures.

The number of significant figures in 0.007 m? is

@ ! (b) 2 © 3 (d) 4

The length, breadth and thickness of a block are measured as 1255 ¢m, 5.0 cm and 0.32 ¢ respectively. Which one of the
following measurements is most accurate

(a) Length (b) Breadth (c) Thickness
Relative error in measurement of length is minimum, so this measurement is most accurate.

(d) Height

The mass of a box is 2.3 kg. Two marbles of masses 2.15 g and 12.39 g are added to it. The total mass of the box to the
correct number of significant figures is

() 2340 kg (b) 23145 kg
Total mass= 32 .@M215 + .01239 = .3Akg

(©) 23k (d) 2314y
Total mass in appropriate significant figures be 2.3 4g.

The length of a rectangular sheet is 1.5 cm and breadth is 1.203 cm. The area of the face of rectangular sheet to the correct
no. of significant figures is :

(a) 18045 cm? (b) 1.804cm? (c) 1805cm? (d) 1.8 cm?
Area= 54 .203 = .8D45 cm? = 8dm? (Upto correct number of significant figure).

Each side of a cube is measured to be 5402 cm. The total surface area and the volume of the cube in appropriate significant
figures are :

(b) 1751 cm?,157.6cm?
(d) 175.08cm?, 157.639 cm?

(a) 1751cm?, 157 cm?
(c) 175 cm?,157 cm?

Total surface area =6 x .4H2)? =175.09cm? =175 1cm? (Upto correct number of significant figure)

Total volume = .42)° =175.64cm3 =175 6cm > (Upto correct number of significant figure).

Taking into account the significant figures, what is the value of 9.99 m + 0.0099 m

(@) 1000 m (b) 10m (©) 9.9999 d) 100m



So/ul‘lbn - (a) 9Om+ .@99m= .9B9m =10.00m (In proper significant figures).

&g@@% 52. The value of the multiplication 3.124 x 4.576 correct to three significant figures is
(a) 14.295 (b) 143 (c) 14.295424 (d) 14.305
So/Ul‘/b . - (b) 124 x 576 =14.295 =14.3 (Correct to three significant figures).
Bfg‘é@% 53. The number of the significant figures in 11118 x 10~ /s
@ 3 (b) 4 © 5 (d) 6
So/Ul‘/b . - (c) The number of significant figure is 5 as 10 ° does not affect this number.
Bfgé@]@ﬁ? 54. If the valge (?f r'e'sistance is 10.845 Ohrg and the value of current is 3.23 ampEreS, the potential difference is 35.02935 voy.
Its value in significant number would be [CPMT 1978]
@ 35V (b) 350 i (c) 3503V (d) 35025 Iy

So/Ul‘/b - (b) Value of current (3.23 4) has minimum significant figure (3) so the value of potential difference V(= IR) have only 3
n significant figure. Hence its value be 35.0 |/

117 Errors of Measurement

=]

The measuring process is essentially a process of comparison. Inspite of our best efforts, the measured value of a quantity is
always somewhat different from its actual value, or true value. This difference in the true value of a quantity is called error of
measurement.

() Abselute error : Absolute error in the measurement of a physical quantity is the magnitude of the difference between the
true value and the measured value of the quantity.

Let a physical quantity be measured n times. Let the measured value be g, @, &, ... 4, The arithmetic mean of these value is
a, +a, +...4,
mT T
Usually, a,, is taken as the true value of the quantity, if the same is unknown otherwise.
By definition, absolute errors in the measured values of the quantity are

A, =a, —a,
Aa, =a, —a,

Aa, =a, —a,

The absolute errors may be positive in certain cases and negative in certain other cases.
(2) Mean abselute error : It is the arithmetic mean of the magnitudes of absolute errors in all the measurements of the
quantity. It is represented by Aa. Thus

—a:|Aa1|+| Aa, | +.....| Aa
n

Hence the final result of measurement may be written as a = a,, + Aa

This implies that any measurement of the quantity is likely to lie between (a,, +E) and (a, —Et).

(3) Relative error or Fraetienal errer : The relative error or fractional error of measurement is defined as the ratio of mean
absolute error to the mean value of the quantity measured. Thus

mean absolute error _ Aa
mean value a

Relative error or Fractional error =

m

(4) Pereentage error : When the relative/fractional error is expressed in percentage, we call it percentage error. Thus

Percentage error = Aa x100%
a

m



118 Propagation ef Errors

(1) Errer in sum of the guantities : Suppose x=q+ b
Let Ag = absolute error in measurement of a

Ab = absolute error in measurement of b

Ax = absolute error in calculation of x je sum of gand 6.
The maximum absolute error in xis AX = +(Aa + Ab)

(Aa+ Ab)
a+b
(2) Error in difference of the guantities : SUppose x=aq— b

Percentage error in the value of x = x100%

Let Ag = absolute error in measurement of g

Ab = absolute error in measurement of b

Ax = absolute error in calculation of x /e difference of gand 4.
The maximum absolute error in xis AX = +(Aa + Ab)

(Aa+ Ab)

Percentage error in the value of x = x100%

(3) Error in product 6f guantities : Suppose x= g x b
Let Ag = absolute error in measurement of g
Ab = absolute error in measurement of b

Ax = absolute error in calculation of x /e product of g and 6.

. . . . AX Aa Ab
The maximum fractional error in xis — =+ —+T
X a

Percentage error in the value of x = (Percentage error in value of ) + (Percentage error in value of )
(4) Error in division of quantities : Suppose x = %

Let Ag = absolute error in measurement of g
Ab = absolute error in measurement of b

Ax = absolute error in calculation of x /e division of gand 6.

The maximum fractional error in xis & = i(ﬁ + %bJ
X a

Percentage error in the value of x = (Percentage error in value of ) + (Percentage error in value of )

. . . a"
(5) Error in quantity raised to seme power : Suppose X = pry
Let Ag = absolute error in measurement of g
Ab = absolute error in measurement of b

Ax = absolute error in calculation of x

The maximum fractional error in xis & = J_r(nE +m %bJ
X a

Percentage error in the value of x = n (Percentage error in value of g) + m (Percentage error in value of b)



HEIO'[G : L The quantity which have maximum power must be measured carefully because it's contribution to error is
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Sﬁmﬁ% ?’rfb/em§ b on errors of measurement

A physical parameter g can be deter#]ﬁw@a&egynmeasurmg the parameters b, ¢, d and e using the relation g =
b*c” /d7e® . If the maximum errors in the measurJr‘?ernfp,; b, c dandeare b; %, c,%, d;% and e; %, then the

maximum error in the value of g determined by the experlmentﬂ{é’@mem [CPMT i98i]
(@ (by+cy+dy+e)% (b) (b +c;—dy—eg)%
(€) (oby+ e, —pdy — ey )% (d) (aby+ fey +ydy + R )%

a=b%cf/sd” e’

So maximum error in gis given by
(ﬁxlooj — a2 100+ 8.2 100+ 7. 29 100 + 5. 22 <100
a max b c d e

= (O‘bl + A +dy + 591)%

The pressure on a square plate is measured by measuring the force on the plate and the length of the sides of the plate. If
the maximum error in the measurement of force and length are respectively 4% and 2%, The maximum error in the

measurement of pressure is [CPMT 1893]
@ 1% ) 2% (c) 6% (d) 8%

F F : .
P= e I_Z , S0 maximum error in pressure (P)

(ﬁxwoj :AF 1OO+2—I><100 =4%+2x2%=8%
P max F |

The relative density of material of a body is found by weighing it first in air and then in water. If the weight in air is

00+ . N, and weight in water is + N, en the relative density along with the maximum
500+ .G5) Ap d h 400+ 0.05 ewty, . Then the relative density al ith th i
permissible perceﬁ/ttgé% error is

(@ 50 +1% (b) 50 +1% (c) 50 +6% (d) 125 £5%
Weight inair = .G+ .G5)N
Weight in water= .00 = .@5)N

Loss of weight in water = .0+ )MNO

: : weight inair . M 0
Now relative density = — . lep = an o
weight loss in water .0 1.00+0.1
. T . @ B 1
Now relative density with max permissible error = + + x100 = 05 X+10)% = Q0511%
.ao @® .

The resistance R:Vf where |~100 £5voltsand i=10 +0.2 a’”ﬂere . What is the total error in R
i S

@ 5% () 7% © 52% ) %%
R=Y o [2Ra00] =200+ 214100 =2 %100 +—22100 = g+ 2)% = 7%
| R eV | 100 10

The period of oscillation of a simple pendulum in the experiment is recorded as 2.63 s, 256 s, 242 s, 2.71 s and 2.80 s
respectively. The average absolute error is

(@ 0ls (b) 0lls (c) 0.0Ls (d) 10s
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B+ 5B+ 2+ A+ .8
Average value = c = .@sec

Now | AT; |= .88- .2= .04

| AT,|= 62— .56 =

| AT, |= .@2- @ =

B B 8

| AT, |= 2L— &=
| AT;|= 80— 2= .18

T T T T T .
Mean absolute error AT:lAlIJrIA2|+|A53|+|A4|+|A5| = ?: 108 = .Msec

The length of a cylinder is measured with a meter rod having least count 0.1 ¢p, Its diameter is measured with venier
calipers having least count 0.01 ¢p,. Given that length is 5.0 ¢m,. and radius is 2.0 ¢, The percentage error in the calculated
value of the volume will be

@ 1% ) 2% (c) 3% (d) 4%
Volume of cylinder V = zr?l
Percentage error in volume % x100 = 24r x100 + ATI %100

r

“f2x—® 100 +—2 0100 | = 1+2)% =3%
Q2 a5

In an experiment, the following observation's were recorded : £ = 2820 m, Ay= 300 kg, /= 0.087 cp, Diameter D= 0041 ¢

Taking g= 9.81 m / s2 using the formula , y:% , the maximum permissible error in is

(@) 7.96% (b) 4.56% (c) 6.50% (d) 8.42%
Y = 4 Mgl S0 maximum permissible error in y= i—Y x100 = (% + A9 + AL—L + % + AI—IJ x100
g

= L + L + L +2xi+i x 100
300 & 9820 41 87

= .0B5 x100 = 5%

According to Joule's law of heating, heat produced H = 12 Ry, where /is current, R is resistance and ¢ is time. If the errors
in the measurement of / R and tare 3%, 4% and 6% respectively then error in the measurement of A is

(a) +17% (b) +16% € +19% (d) +25%
H = I%Rt
g %xlOOz(% ﬁ+%jx100 = Ax3+4+6)% =16%

If there is a positive error of 50% in the measurement of velocity of a body, then the error in the measurement of kinetic
energy is

@) 25% (b) 50% (©) 100% (d) 125%

Kinetic energy E = %mv 2

. AE 100- (A—m+2ﬂjx100
E m \Y;



Here Am =0 and ﬂxlOO =50%
%

A—EE><100 =2x50 =100%

1

3g2
Prgéjgm 64. A physical quantity P is given by A= A'B T The quantity which brings in the maximum percentage error in Pis
c™D?
@ A4 (b) 8 © ¢ d) o

So/Ul‘/b . - (c) Quantity ¢ has maximum power. So it brings maximum error in A2



